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Recommender Systems are Ubiquitous
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Recommender Systems are Ubiquitous
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Recommender Systems are Ubiquitous
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Recommender Systems are Ubiquitous
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Key of RS: Personalization

e The key feature of model recommender system is “Personalization”
o Provide different and personalized items for different users

PERSONALIZATION




(Just a little bit) Models

Input
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(Just a little bit) Models

e The Key Problem E
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A key task:
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User-based Collaborative Filtering

e Consider user x ﬂ
e Find set N of other users whose ratings N
are “similar” to x’s ratings Tim
o sim(x, y) = cos(ry, 1y) = ||r:fc|:|r|yryn -
e Estimate x’s ratings based on ratings N |,
of usersin N \ A & \
Key Idea: Recommend those items that other jﬂh Rt
onn

similar users liked
(a) User-based filtering

11




Item-based Collaborative Filtering

e Consider user x, consider an item i the user liked ﬂ

<

e Find set N of other items whose ratings "
are “similar” to I's ratings Tim

o sim(i, j) = cos(r;, r;) = ||rir|i:|r|i‘j|| .

e Recommend these items =

Amy

Key ldea: Recommend those items that are iR
similar to what the user have already liked

(b) 1tem-based filtering
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A Machine Learning-based Model

e Latent Factor Models for Matrix Completion

P.: The “learned” feature vector for user u
q;: The “learned” feature vector for item i User/ltem Personalization by Vector Representations
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Latent Factors

Regularization ' /\
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(Just a little bit) Models

e Providing Recommendations by Ranking

B o e o
OO a@él
LR SR W X

S>>0 0>
@ I @) 03 3

14



Ethics of Recommender Systems

e Feedback Loop and Echo Chambers

Transparency
o How to explain to users why certain things are recommended specifically for you

e Bias and Fairness
o Bias and Fairness on User-side (model bias)
o Bias and Fairness on Provider-side (the Matthew Effect)

e Relationship between Transparency and Fairness
e Open Discussions
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Ethics of Recommender Systems

e Technology is neither good nor bad; nor is it neutral
o It all depends on how we use it, and we should use technology in a responsible way
o E.g., Atomic theory: nuclear power station and clean energy vs. nuclear bombs

e Recommender Systems

o Helps users to find good items in a sea of items
o May also bring counter-effects

“Technology 1is
neither good

nor bad; nor is
it neutral.”

— Melvin Kranzberg
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Feedback Loops and Echo Chambers

e \Whatis Echo Chamber

An echo chamber is "an environment where
a person only encounters information or opinions
that reflect and reinforce their own.

e Why RS creates Echo Chambers

F
User—based © Your
similar user
The Feedback Loop LFM

/l‘e,,,Nba Your
Seq Cr similar item

The more you like something, the more RS will recommend
similar things, and thus you like them even more.
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Echo Chambers in E-commerce

e System always recommend similar products
e Even always recommend products that you already bought (e.g., phones)

Products related to this item

Sponsored @
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$39.88 vprime
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R R 19
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1668 nteral Memory
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-5 Cad ncuded

Simple Mobile LG
Journey 4G LTE Prepaid
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Simple Mobile

Tracfone LG Journey 4G
LTE Prepaid Smartphone
(Locked) - Black - 16GB -
SIM Card In...
i A iy 63
$2999 /prime

2 Locked to

57 Touchcreen
~1668 ntermat Miemory
- Android™ 81, Orea™
- Cord inloded

Total Wireless LG Solo
4G LTE Prepaid
Smartphone (Locked) -
Black - 16GB - Sim...

L 0 0 "¢ td]
$4999 prime

Page 1 of 24

Total Wireless

2]
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Echo Chambers in Video/Movie/Book Recommendation

e Always recommend similar videos/movies/books
e Prevents you from and exploring a much richer and diversified world
e Prevents you from thinking outside of the box
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Echo Chambers in Social Networks (e.g., Twitter)

e The Social Echo Chamber

@)

o O O O

Makes all your connections like-minded persons as you

Makes all your news feed recommendation similar to what you have liked
Makes it difficult to explore new ideas and opinions different from yours
Makes everyone feel the whole world thinks the same way as you think
May even reinforce someone’s extremist ideas




How to Avoid Echo Chambers

e An Active Research Area in RS, ML, Al

e The key is to take care of the diversity in recommendation
o Provide similar item recommendations, and meanwhile some dis-similar recommendations
e A trade-off between utility and diversity
o Best if the dis-similar recommendations are also what the user likes, e.g., personalized diversity

NON PERSONALIZED DIVERSITY-ORIENTED RECOMMENDATION PERSONALIZED DIVERSITY-ORIENTED RECOMMENDATION

Recommendat ion list Personality Recommendation list
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Transparency of Recommendation

e Tell users why something is recommended: Explainable Recommendation
e Many machine learning models are black-boxes

p.: The “learned” feature vector for user u
q;: The “learned” feature vector for item i

&~ — T .
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Explainable Recommendation

e Letting the users know why is importanE
Help users to make the right decisions
Otherwise human might be “controlled”

by algorithms

e Explainable Recommendation

More generally: Explainable Al (XAl)
An active Research area in Al
An example: Explicit Factor Model

Explanation: We recommend because
you may be interested in [feature], and
this item performs well on that feature.
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Bias and Fairness in Recommendation

e A broad problem, broadly classified into two problems
o User-side fairness, Provider-side fairness

e Why? Usually RS works in two-sided markets/environments
o RS is actually a resource allocation problem

The Prosumer Paradigm:

- e
[

®F — W

Consumers — items — Producers "4 >< '?A
g N

Buyers — Goods — Sellers © — 3 $ \ — P

Freelancer — Jobs — Employers - .

Borrowers — Money — Lenders he o} o >< 3

[
Passengers — Services — Drivers ‘& —7 —
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User-side Fairness in RS

e \Where does unfairness come from?
o Some users are more active
m e.g., more time to explore items, more money to buy items
o They contribute more training data to the ML model
o The model behavior may be dominated by active users.

m e.g., tend to recommend items that the active use likes to everyone

p.: The “learned” feature vector for user u

7o = T 7 . .
Tui = Pu 4 q;: The “learned” feature vector for item j

1 &N $)

Less active user g min z (ryi —PL q)?+ 14 Z Il po 12+ A, Z_II qi II?
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~
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Original Matrix
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User-side Fairness in RS

Observation: Top 5% active users’ data may dominate a ML algorithm

Dataset CDs & Vinyl Clothing
Overall Inactive Users  Active Users GRU Overall Inactive Users  Active Users GRU
NDCG F; NDCG F; NDCG F; NDCG F; |[NDCG F; NDCG F;, NDCG F; NDCG F

HeteroEmbed 6.992 ) 3.576 ( 6.526 ) 3.373 15843 7.429  9.317 4.056 | 3.221 1404 3.121 1348 5.130 2461 2.009 1.113
Fair HeteroEmbed { 8.094 ) 4.019 ( 7.674 ) 3.820 (16.074) 7.801 8.400 3.981| 3.494 1.536 3.484 1482 3691 2.556 0.207 1.074

Measures (%)

PGPR 6.947 3571 6526 3.373 14943 7324 8.417 3951 | 2.856 1.240 2787 1.198 4.197 2036 1410 0.833
Fair PGPR 8.045 4.019 7.675 3.820 15.074 7.801 7.399 3.261 | 3.101 1314 3.089 1.274 3.322 2.078 0.233 0.804
KGAT 5411 3.357 5.038 3.162 12.498 7.046 7.460 3.884 | 3.021 1305 2.931 1.254 4741 2.259 1.810 1.005
Fair KGAT 5.640 3.492 5.295 3.318 12366 6.791 7.081 3.473 | 3.206 1.393 3.119 1.347 4.843 2.262 1.724 0.915
m
max R = Z Rrec(Qi) GRU(G4,G
o £ (61.62Q) = |1 Z T - o EG] 7(Qi)

N
ZQU =K, Q;j € {0,1}

=l GEDU (G, G2, Q) = Z FQ) -5 Q)
GRU(G1, Gy, Q) <€ zeG i€G,

GREU(G1,G2,Q) < & 26




ltem-side Fairness in RS

e \Where does unfairness come from?

o Some providers are big, some are small

m Big retailors like Walmart vs Family-owned small-business retailors
o Big providers have more budget for advertising and marketing
m Thus their items get more exposure in E-commerce

The more exposure they get, the more users buy their items
RS thinks these items are more liked by users, and thus recommend these items even more
It becomes even more difficult for small-businesses to survive in the environment
The Matthew Effect: The rich get even richer and the poor get even poorer
This is unhealthy to the national economy!

O O O O O
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0.8 1 0.6

ni Index
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0.1 0.6 0.4 4
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Relationship between Transparency and Fairness

e Transparency and Fairness benefit each other: Explainable Fairness

e |egal Regulatory Approaches to Al Ethics

o E.g., EU General Data Protection Regulation (GDPR), The California Privacy Act of 2018
o Emphasize the trustworthiness, robustness, transparency, and fairness of algorithmic

decisions in Al systems.
@plain to@

Monopolized Market
(e.g., e-commerce, social network)

Recommender System
(already fair? Who knows!)

A healthy virtuous cycle between user and system, and thus a healthy online economy.
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Wrap up

e Examples of Recommender Systems
e A Little Bit Models

e Ethics of Recommender Systems
o Feedback Loop and Echo Chambers
o Transparency
m How to explain to users why certain things are recommended specifically for you
o Bias and Fairness
m Bias and Fairness on User-side (model bias)
m Bias and Fairness on Provider-side (the Matthew Effect)
m Advertising Fairness
o Relationship between Transparency and Fairness
m Legal Regulations on Al Ethics

e Open Discussions
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