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Al for Science: Some Examples

« Al for Drug Discovery
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Protein Structure Prediction

MAGELVSFAVNKLWDLLSHEYTLFQGVEDQVAELKSDLNL
LKSFLKDADAKKHTSALVRYCVEEIKDIVYDAEDVLETFV
QKEKLGTTSGIRKHIKRLTCIVPDRREIALYIGHVSKRIT
RVIRDMQSFGVQQMIVDDYMHPLRNREREIRRTFPKDNES
GFVALEENVKKLVGYFVEEDNYQVVSITGMGGLGKTTLAR
QVFNHDMVTKKFDKLAWVSVSQDFTLKNVWQNILGDLKPK
EEETKEEEKKILEMTEYTLQRELYQLLEMSKSLIVLDDIW
KKEDWEVIKPIFPPTKGWKLLLTSRNESIVAPTNTKYFNF
KPECLKTDDSWKLFQRIAFPINDASEFEIDEEMEKLGEKM
TEHCGGLPLAIKVLGGMLAEKYTSHDWRRLSENIGSHLVG
GRTNFNDDNNNSCNYVLSLSFEELPSYLKHCFLYLAHFPE
DYEIKVENLSYYWAAEEIFQPRHYDGEIIRDVGDVYIEEL
VRRNMVISERDVKTSRFETCHLHDMMREVCLLKAKEENFL
QITSNPPSTANFQSTVTSRRLVYQYPTTLHVEKDINNPKL

— Molecule Generation and Property Prediction

= Soluble? Toxic? Crosses the BBB?
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The Explainability Crisis

* A Key Problem with current Al models

— Most Al prediction methods are not explainable

« They can make good predictions based on massive data and complicated
models, but are less capable of explaining the prediction results and reveal

the insights to human scientists

* They can produce prediction results, but hardly explains why the results are

predicted they way they are
* Origin of the Problem

— Difference from traditional methods: Whitebox vs. Blackbox models

e.g., (partial) differentiable equation

ou )
— +u-Vu=-—+vrvV-u,

ot 0

Navier-Stokes equation

e.g., deep neural networks
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Why Explainable Al for Science?

« The essence of scientific research is to understand the “why”

— Not only know how but also know why
« Know how: Blackbox Al for Prediction; Know why: Explainable Al for Explanation

— In many cases, understanding the “why” behind the result is even more
important than just knowing the result itself, because knowing the why
implies real growth of knowledge and helps in making critical decisions

— Furthermore, if Al accumulates more and more dark knowledge that are not
understandable to humans (which is already happening), it may eventually
lead to a singularity where humans are lagged behind on the conquest of
knowledge than machines

The

Singularity N
Trans-
Humans?

Intellectual Level/Power

Human Intellect Machine

Intelligence

. < 6
Time 1950 2000

o

Image credit: https://www.webpages.uidaho.edu/vakanski/Technological%20Singularity.html



https://www.webpages.uidaho.edu/vakanski/Technological%20Singularity.html

RUTGERS

The Conquest of “Why” in Science

« The conquest of why has always been the key theme of
science in human history
A Legend Example

— The Kepler's Laws of Planetary Motion
— The Newton’s Law of Universal Gravitation

Tycho Brahe (1546-1610) Johannes Kepler (1571-1630) |Isaac Newton (1643-1727)
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Kepler's Laws of Planetary Motion

We can

Obverse it!

Tycho Brahe (1546-1610)

Demark astronomer

Good at astro-observation

Observed and recorded a lot of

data about Mars movement.

Time| Position
1 (a,b)

2 (c,d)

3 (e,f)

We can
Predict it!

Johannes Kepler (1571-1630)
German astronomer, student of Tycho Brahe.

Analyzed Tycho'’s data, and discovered the rules
hidden in the data.
The “Kepler’s laws of planetary motion”:
7,.3
2=k
T: period of circling around the sun, r: radius

Time| Position
1 (a,b)

2 (c,d)

3 (e,f)




RUTGERS

Is the Story Over? No!

We Understand it!

We can
Predict it! jl> We know Why!
Johannes Kepler (1571-1630) Isaac Newton (1643-1727)
German astronomer, student of Tycho Brahe. English mathematician, physicist, astronomer,
theologian, and author.

Analyzed Tycho’s data, and discovered the rules
hidden in the data. Proposed the Newton's law of universal gravitation
The “Kepler’s laws of planetary motion”: + differential calculus:

T'3

Tz = Naturally derives out the Kepler’s laws of
7. period of circling around the sun, r: radius planetary motion!
Time| Position r3
1 (a,b) — ﬁ — T K is because F = Gml;nz
2 | (cd) T2 r

3 (e,f)
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Three Key Roles in the Scientific Discovery Process

Tycho Brahe (1546-1610) Johannes Kepler (1571-1630) Isaac Newton (1643-1727)
Observation Analyzation Explanation
Time| Position 3
1 (a,b) =K _ mimso
2 [(cd) T2 F=G—3
3 (e,f)

10
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What if Kepler had DL in the 16-17% Century?

We can We can
Obverse it! Predict it!
Tycho Brahe (1546-1610) Johannes Kepler (1571-1630)
Demark astronomer German astronomer, student of Tycho Brahe.

Good at astro-ob ti ‘ There could be some rules underlying the data.
000 at astro-ebservation % ldon’t know what it is, but NN can fit any function.

I ing to trai NN to fit th ta!
Observed and recorded a lot of i So I'm going to train a NN to fit the data

data about Mars movement.

7/ \x~_ ltfits the data pretty well!
<I<I=<I=1=<] | can make predictions!

EPBc it r = some NN(T)
Time| Positon { ~ N [ LwLowoool
1 (a,b)
§ EZ’?)) But wait: can this be called scientific discovery?

Science is not only about know HOW, but also know WHY!
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Challenges in Modern Scientific Research

We can
Predict it!

Johannes Kepler (1571-1630)
German astronomer, student of Tycho Brahe.

‘ There could be some rules underlying the data.
| don’t know what it is, but NN can fit any function.

i So I’'m going to train a NN to fit the data!

7\~ ltfits the data pretty well!
D<D<I<<D<] | can make predictions!
D<D<D<D<D<] r =some NN(T)

But wait: can this be called scientific discovery?
Science is not only about know HOW, but also know WHY!

However, manually analyzing data
as Kepler did is very challenging in
modern scientific research

— Since the amount of data is huge

— e.g., produced by astronomical
telescope and particle colliders

We indeed need Al for data
analyses and model learning

12
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Challenges in Modern Scientific Research

We can jl>

Predict it!

Johannes Kepler (1571-1630)
German astronomer, student of Tycho Brahe.

‘ There could be some rules underlying the data.
| don’t know what it is, but NN can fit any function.

i So I'm going to train a NN to fit the data!

—/\%~_ ltfits the data pretty well!
P<B<BB | can make predictions!
D<D<D<D<D<] r =some NN(T)

>l

But wait: can this be called scientific discovery?

Science is not only about know HOW, but also know WHY!

We Understand it!
We know Why!

Isaac Newton (1643-1727)

Explainable Al (XAl) plays the role of Newton

Interpret and explain the learned (black-box)
model, reveal its insights to human scientists

Help us better understand the nature.

13
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Three Key Roles in the Scientific Discovery Process
Using more CS/Al language

Tycho Brahe (1546-1610) Johannes Kepler (1571-1630) Isaac Newton (1643-1727)
Observation Analyzation Explanation
Data Collection Model Learning Model Interpretation (XAl)

Time| Position 5
1 (a,b) T . - mims
2 (c,d) 3 K F=G 2
3 (e,f)

Almost automated Many available methods  Still needs much exploration

14
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A Paradigm Shift (again) for Scientific Research

« From Theory-driven to Data-driven (back to Kepler), but with
Explainable Al (plus Newton)
— Blackbox Al for Prediction (the Kepler model)
— Explainable Al for Explanation (the Newton model)

« A Paradigm Shift in Scientific Discovery

— Explainable Al replaces manual hypothesis generation

/\
Experiment .
The Hypothetico-Deductive
Paradigm for Science Discovery

/\
Experiment .

Explainable Al-based
(Hypothesis-free) Paradigm
for Science Discovery

\ Model / 15
Interpretation

Model
Learning
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Three Examples on Explainable Al for Science

« Rediscover Kepler's laws and Newton’s laws from Tycho's
ancient data [1]
— A good example to demonstrate the idea of XAl-driven scientific research
— Pay our respect to some of the greatest minds in human history

« More “practical” Examples
— Explainable Al for Molecular Property Prediction [2]
— Explainable Al for Biodiversity Conservation [3]

* [1] Zelong Li, Jianchao Ji, and Yongfeng Zhang. “From Kepler to Newton: Explainable Al for Science
Discovery.” In ICML Al for Science 2022.

* [2] Juntao Tan, Shijie Geng, Zuohui Fu, Yinggiang Ge, Shuyuan Xu, Yunqi Li, and Yongfeng Zhang.
"Learning and evaluating graph neural network explanations based on counterfactual and factual
reasoning." In Proceedings of the ACM Web Conference 2022.

*  [3] Meet Mukadam, Mandhara Jayaram, and Yongfeng Zhang. "A Representation Learning
Approach to Animal Biodiversity Conservation." In Proceedings of the 28th International Conference
on Computational Linguistics. 2020.

16
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From Kepler to Newton: A Case Study

« A New Paradigm for Scientific Discovery
— Model Learning and Interpretation automatically generates hypothesis

« Use the paradigm to rediscover:
— Kepler’'s Laws of Planetary Motion
— Newton’s Law of Universal Gravitation

/\
Experiment .
The Hypothetico-Deductive
Paradigm for Science Discovery

/\
Experiment .

Explainable Al-based
(Hypothesis-free) Paradigm
for Science Discovery

\ Model /
Interpretation 17

Model
Learning
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Kepler's Reasoning Process

« At Kepler’s time, there were three models of planetary motion
— The Ptolemaic, Copernican and Tychonic systems

— Kepler mentioned that these three systems all had high prediction
accuracy in the near term, but diverged and failed to fit historical and
future observations in the long term

— Propose a new hypothesis: the orbit of a planet is an ellipse with the
Sun at one of the two foci (Kepler’s first law of planetary motion)

— Then he used the observation data to test his hypothesis
« We show the hypothesis-free scientific discovery process

based on Explainable Al
— We directly start from data \ \

- )
to rediscover the Kepler's
. . Explainable Al-based
The H h -D
laWS e ypot etl.co edyctlve (Hypothesis-free) Paradigm
Paradigm for Science Discovery for Science Discovery

\ Model /
Interpretation

Model
Learning
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Dataset: Ancient Mars Data from Tycho Brahe

Time Mars’ Position | Sun-Mars | Difference
YYYY/MM/DD in Ecliptic | Distance

1582/11/23 16:00 90.70306° 1.58852 +1/30"
1582/12/26 08:30 106.12167° 1.62104 +3/49"”
1582/12/30 08:10 107.94222° 1.62443 +5'50"
1583/01/26 06:15 120.10667° 1.64421 —2/33"
1584/12/21 14:00 123.86250° 1.64907 +1'04"”
1585/01/24 09:00 138.78556° 1.66210 -3/32"
1585/02/04 06:40 143.56139° 1.66400 -3'08"
1585/03/12 10:30 159.38722° 1.66170 —2/29"
1587/01/25 17:00 158.22778° 1.66232 —-0'10"
1587/03/04 13:24 174.94722° 1.64737 —-0'59"
1587/03/10 11:30 177.59833° 1.64382 0’0"
1587/04/21 09:30 196.74750° 1.61027 +1/30"
1589/05/08 16:24 196.92056° 1.61000 —2/43"
1589/04/13 11:15 214.03056° 1.57141 +1/40"
1589/04/15 12:05 215.02806° 1.56900 +0'37"
1589/05/06 11:20 225.51000° 1.54326 +0'57"
1591/05/13 14:00 252.12722° 1.47891 —4'24"
1591/06/06 12:20 265.64667° 1.44981 —3'15"
1591/06/10 11:50 267.94694° 1.44526 —4/39"
1591/06/28 10:24 278.49222° 1.42608 —5'39"
1593/07/21 14:00 320.02722° 1.38376 —2/31"
1593/08/22 12:20 340.25694° 1.38463 —-0'36"
1593/08/29 10:20 344.62083° 1.38682 —2/19"
1593/10/03 08:00 6.32750° 1.40697 —-0'16"”
1595/09/17 16:45 22.82194° 1.43222 —1/27"
1595/10/27 12:20 45.59389° 1.47890 —0'29"
1595/11/03 12:00 49.44250° 1.48773 +0'03"
1595/12/18 08:00 73.04139° 1.54539 —-0'59"

Table 1: Position of Mars when orbiting the Sun

Three main variables

— Time: t

— Mars angular position: 6
— Sun-Mars distance: r

Data copied from Kepler's book
Astronomia Nova (1609)

19
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Blackbox and Whitebox Models

« The black-box model for Prediction and Data Augmentation
— Simple Multiple Layer Perceptron (MLP) neural network

y =o(wio(W3o(Wix + by) + by) + bs)

1st Layer
. J
h'd
2" Layer
~"

3" Layer

Input Output

* The white-box model for Explanation

— Symbolic Regression: Transform the MLP neural network into a
symbolic equation

20



Distance of Mars and Sun (AU)
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Rediscover Kepler's Laws based on Explainable Al

« Black-box Model (DNN) for Prediction and Data Augmentation
r=NN(0)

Origin Kepler's Data Data Augmented by NN
1.65 - . . ,\ 1659
. 2 \
1.60 A < 1.60 A /.
1.55 A ‘ g 1.55 /
| 5t \ /
E \ /
1.50 - Z 1501 \
o
. \
1.45 - . G 1.45 \ K
. k1 /
. A /
1.40 - ' 1.40 - \/
0.0 Oj2 0j4 0?6 0f8 liO OfO Of2 0f4 016 018 1i0
Mars' longitudes of heliocentric ecliptic coordinates (normalized) Mars' longitudes of heliocentric ecliptic coordinates (normalized)
Figure 3: Data Visualization before Training Figure 4: Data Visualization after Training

Use 90% data points for training and 10% for validation.
MSE on training data: 4x10~'1; MSE on validation data: 7x1078

Blackbox neural networks can already make accurate predictions, though we don’t understand the insight
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Rediscover Kepler's Laws based on Explainable Al

*  White-box Model for Explanation

— Symbolic regression based on the augmented data

Size | Error | Function
1 0.088419 | 1.54806
5 0.084370 | 1.54329 + 0.0130577 - 6
12 7 0.045791 | 1.45537 +0.021878 -0 - 0
‘ . 8 0.038594 | 1.53256 — 0.101048 - cos @
s 10 1 « o ° _0.321963
5 Lo 10 | 0.031201 | 1.65411 — ;2321963
v 8 11 0.004519 | 1.51578 — 0.142019 - cos (6 + 0.542453)
= i Sharpest 1310003003 | 1518360141985 . ¢ - (—0.544189 — 9))
{ i Increase 1.51977
g6 . 7 14 0.000136 | 15563570.0032072-cos(970.544536) |
2 4 161 0.U00135 1.00625+0.09330i58;§2)§(‘1‘.)00017-0+0.544619)
& S | .ol 18 | 0.000124 1.0078+sin(0.0935'495~cos896r7%2{1§1$89))
z i _ :
19 0.000118 | 1.51016 010536323;_15075 22—
0 0 10 20 20 21 0.000060 1.00625+0.0932649-coé(9+0.544414+%
0.0793261
Size (Complexity) 24 | 0.000048 | 1.51031 — G5earisy COS((?,';fgfg%gggloi9257757713%7
Figure 5: Size and Negative log Error 26 | 0.000034 | 1.51023 — goesigaor — — oseres —— —omomrry
cos(—0.543588—0)
29 0.000030 | 1.51032 — 7.14743+0.668919-cos(0.55992— 3-00769976 4 g)

Table 2: Symbolic Regression Results

1.51977 1.51033 29

= 9 = =
r =10 = 150625 + 0.0932972 - cos(f + 0.544536) 1+ 0.0927177 - cos(6 + 0.544536)
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Rediscover Kepler's Laws based on Explainable Al

* Physical Interpretation of the Results
— Mars orbit is an ellipse, and Al-derived eccentricity is 0.0927177

— Very close to Kepler's result 0.09264 (relative error < 0.1%) and modern
result 0.09341233 (relative error < 0.7%)

B 1.51977 B [ 1.51033 ]

~ 1.00625 4 0.0932972 - cos(6 + 0.544536) 1+ 0.0927177 - cos(f + 0.544536)

— Tmin = f[0 = —0.544536 (—31.2°)], indicating closest Mars Opposition
in August, which is consistent with historical observations

« 31.2/360 x 365 = 32 days ahead of the fall equinox, thus in August

Year (AD) | Date | Earth-Mars Distance in AU

r=f(0)

1561 Aug. 07 0.37325
1640 Aug. 20 0.37347
1687 Aug. 09 0.37434
1719 Aug. 25 0.37401
1766 Aug. 13 0.37326
1845 Aug. 18 0.37302
1924 Aug. 22 0.37285
2003 Aug. 27 0.37272
2050 Aug. 15 0.37405 23

Table 5: Closest Approaches of Mars Oppositions in History
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Rediscover Newton’s Laws based on Explainable Al

« Black-box Model for Prediction and Data Augmentation
 We already have r = f(0), we want 8 = g(t)

— So we can predict the position of Mars (0, r) for any given time t

0 = NN(t)

Origin Kepler's Data Data Augmented by NN

31 . 3
24 2
g 1] LN
2 2
© ©
S 04 S 01
5 5
s -1 = -1+
-2 -2
_3 _I T T T T T _3 1 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Time (moved into one period and normalized) Time (moved into one period and normalized)
Figure 6: Data Visualization before Training Figure 7: Data Visualization after Training

Use 90% data points for training and 10% for validation.
MSE on training data: 7x10~8; MSE on validation data: 1.5x107°
Blackbox neural networks can already make accurate predictions, though we don’t understand the insight
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Rediscover Newton’s Laws based on Explainable Al

* Deep Learning for Prediction and Data Augmentation

— The simple experiment implies a significant role of machine
learning (especially deep learning) in scientific discovery

* The real t — 0 relation based on advanced math tools
and deeper understandings of planetary motion:

— — €2 gqj
2_7rt _9ar 1—e¢ for (Q) _ ev1—€*sin(f)
T 1+e€ 2 1 4 ecos(6)

— i.e., we can express t as a function of 9, i.e., t = h(0), however,
we can hardly find a function to express 6 as t, i.e., 6 = g(t),
since it is a transcendental equation
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Rediscover Newton’s Laws based on Explainable Al

 However, we still want some 6-as-t relationship

— We already have r = f(0), if we have 8 = g(t), then we can
predict the position of Mars (r, 8) for any time t

 We can adopt deep neural networks to learn a black-box
predictor 6 = NN(t)
— Universal Approximation Theorem (UAT) [4,5,6]

« A network containing a finite number of neurons can approximate arbitrarily
well any real-valued continuous functions on compact subsets of R".

- 0 = NN(t) is differentiable!
« We can conduct mathematical analysis on the 8-as-t relationship
_ dNN(D) q = d2NN(t)
de ’ dt2
« Makes it possible to analyze the relationship between many
variables that are otherwise difficult to calculate

[4] Balazs Csanad Csaiji (2001). Approximation with Artificial Neural Networks. Faculty of Sciences, Etvs Lornd University, Hungary 24(48:7).
[5] Cybenko, G. (1989). Approximations by superpositions of sigmoidal functions. Mathematics of Control, Signals, and Systems, 2(4):303-314.
[6] Hornik, Kurt (1991). Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2): 251-257.
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Rediscover Newton’s Laws based on Explainable Al

« White-box Model for Explanation

— Variable augmentation (t;, 0;,7;, w;)

- 6; = NN(t;), 1 = f(6;) = f(NN(t;)), w;

_ NN(t;+8)-NN(t;—5)

26

— Augment variable without prior assumption: (t;, 8;,7;, 7%, 13, w;, w?, w})

Size | Error | Function
*sh . st 1 0.000022 | 818954 x 1Q0~°
o arpest Increase 4 0000006 0.0003398491
0.000002 | 0.000218597T - (1.92033 — r)
6 | 0.000003 | —2.65592 x 1075 4 0-000390417
13| 0.000003 | —8.50685 x 105 + _200%kosizs,
0.000100316
16 0.000002 —1.08788—0.0590273-cos(— 2147483648 13)+12)
0 5 10 15 20 25 30 22 0.000001 0.0460772 0'00044857"134
rg—3.36628 °°8( T3 7o570570-5)173) T

Size (Complexity)

Figure 8: Size and Negative log Error for r and w

o 0.000298491

r3

w

Table 6: Symbolic Regression Result for r and w

, or r3w? =c=0.000298491AU3day™ %
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Rediscover Newton’s Laws based on Explainable Al

* Physical Interpretation of the Results

o 0.000298491

- . or rw? =c¢=0.000298491 AU3day 2

w

- r3w? is close to modern result: r3w? = GM = 2.96x10™* AU3day~?

« Relative error < 0.8%

. 0.000298491 1
— Acceleration a = rw? = x

r2 r2
— Leading to the inverse-square law of acceleration and gravitation
— Also Kepler’s third law

3 c

;—2 7 = 7.56086x107°AU3day >

« Close to Kepler's result 7.5x107°AU3day 2
» Relative error < 0.82%

28
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Recap

Tycho Brahe (1546-1610) Johannes Kepler (1571-1630) Isaac Newton (1643-1727)
Observation Analyzation Explanation
Data Collection Model Learning Model Interpretation

SO

Experiment
and Test

Experiment
and Test

Explainable Al-based
(Hypothesis-free) Paradigm
for Science Discovery

The Hypothetico-Deductive
Paradigm for Science Discovery

Model
Learning

29
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The Molecule Classification Problem

» Predicting the function of molecules
— A fundamental problem in many chemistry/biological/medical research tasks, e.g., drug discovery

« Mathematically, molecule is a graph
— Current approaches use Graph Neural Networks (GNN) for prediction
— E.g., Predict if a molecule is soluble, toxic, or can pass the Blood-Brain Barrier (BBB)
— A binary classification problem

e O
GNN %&Q&{w =Yes / No

 However, we want to know why the model believes in the classification result

LC2-2 LC11-1 :}-\ | LC21-1 LA12-2 - LB13-2

~ w4

\\\ :Q/j { \F - — g é}(\/\ Q—O g) (F\] o='(“\—
b—(D\E;A “@"—« m C?}*.%:T:X s 0 ,

¢ NO/* " " Q ' ® o\\/\:/t" i
LC5-: ) Q l:C“j3-1 . “:‘_Q LC22-2 _27/_\ 4" LAZ{ | LBZ:-1 ::}—/_ oh)
A A i Al Pe- A A S danad lssase.
Q/L " O/z - " " 30
F CFy

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y, Li, Y. Zhang. ” Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning.” WWW 2022.
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Explainable Graph Neural Networks

Our goal is to develop Explainable Graph Neural Networks (XGNN)

o 5
GNN %@Qu; =Yes / No

ChH

N

o 5
XGNN %Q\Qu;w = Yes / No + Explanation

31
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Factual and Counterfactual Explanations

« Example: Molecule mutagenetic prediction
— If the GNN model predicts the molecule as mutagenetic, why?

1
!
~ ]
) , .
N N
/
/
/
/
[
C /”‘
// 4”
. ‘ ‘
-
-
Q@
—— '
1
\
\ 1
\ |
\
\
2 -
C / C .
P -
[ -
-
A .. ,
- ~ ’
’,’ C )
‘ )
\
\
\
\
g C
‘ _____ ke
Pie ~\\\
’ T
-
/’ I
P H \
' ‘
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Factual and Counterfactual Explanations

* Factual explanation seeks a sufficient condition
— The molecule will be mutagenetic with the highlighted bonds

J .
C c
‘ ________ C/ \C/ \'Cl"’ ’
\ A -
° C\C J/ \,C/ H
Yo €

33
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Factual and Counterfactual Explanations

« Counterfactual explanation seeks a necessary condition

— The molecule will not be mutagenetic without the highlighted bonds

34
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Factual and Counterfactual Explanations

« Factual and Counterfactual explanation seeks a compact (both
sufficient and necessary) condition
— The molecule will be mutagenetic with the highlighted bonds
— The molecule will not be mutagenetic without the highlighted bonds

— No more, no less, just OK r
N H

\
C o H
‘ ———————— C/ \ (i/ o
\ o o
® <o~ © @
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How to Find the Explanations?

* AGiven graph G, = {V,, £,}. Adjacency matrix A4, €
{0,1}VilxIVil ‘Node feature matrix X, € RIVklxa,

* The ground-truth class label is y,, € C (mutagenetic, non-
mutagenetic).

* The GNN will predict the estimated label ¥y, for G}, by:

Y, = argmax Pp(c | Ag, Xi)
ceC

* Generate edge mask M,, € {0, 1}/VkI*IVkl feature mask F,, € {0,
1}|Vk|><d_

* Explanation: Sub-graph A, ©M,,, sub-features X;, O F.

Explanation Sub-Graph
36

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.
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How to Find the Explanations?

Factual Reasoning: “Given A already happened, will B happen?”.

Factual Condition:

arg max P(p(c | Ak ©O) Mk:Xk ®© Fk) = gk

ceC - < \_
The remaining edges

Counterfactual Reasoning: “If A did not happen, will B still
happen?”

Counterfactual Condition:

argmax Py (c | Ap — Ax © My, Xjo — Xi © F) # U
ceC .

The removed edges

37

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.
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What are good Explanations? Simple and Effective

 Occam’s Razor Principle

— If two explanations are equally effective in explaining the results, we
prefer the simpler explanation than the complex one.

* To character Simpleness C(M,F) = ||Ml|lo + ||Fllo
— Explanation Complexity — T

How many edges are How many features are
included in the explanation included in the explanation

 To character Effectiveness
— Factual Explanation Strength

S¢(M,F) = Po(x | Ax © Mg, Xy © Fy)
— Counterfactual Explanation Strength
Sc(M,F) = =Py (Jx | Ak — Ax © Mg, Xg — X © Fy)
Both should be large enough to satisfy the conditions
38
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Complexity vs. Strength

« Two orthogonal concepts

Simple and Strong
Explanations

A Strong

Complex and Strong
Explanations

Simple

Simple but Weak
Explanations

Complex

Complex but Weak
Explanations

Weak
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Complexity vs. Strength

« Two orthogonal concepts

A Strong

Simple and Strong
Explanations

Complex and Strong
Explanations

Simple

Simple but Weak
Explanations

Complex

Complex but Weak
Explanations

Weak
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Complexity vs. Strength

« Two orthogonal concepts
A Strong

N

Simple and Strong Complex and Strong

Explanations Explanations
Simple Complex

Simple but Weak Complex but Weak
Explanations Explanations

Weak
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Counterfactual Learning and Reasoning

« Seek simple and effective explanations

minimize C(M, Fi)
N . st, Sp(My, Fr) > Po (ks Ak © My, Xic © Fr),
s.t., Explanation is Strong Enoug Se(My, F) > _Pd>| A — Ap © M Xi — X © )

- Jrs is the label of the second largest prediction probability
— Idea: Find minimal components of a molecule which is both sufficient and necessary

minimize Explanation Complexity

* Relaxed Optimization based on Lagrange Multiplier for model learning

minimize ||M; |1 + ||F;|l1 + A(aLf + (1 — a)L)

/ \4
Le =ReLU(y + Po(Jis | Ax © M, X © F;) L. =ReLU(y - S, (M, FY)
—S¢(M, FY)) — Po(fk,s | Ax — Ak © My, X — X © Fy))
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Counterfactual Learning and Reasoning

« Seek simple and effective explanations

minimize C(M, Fi)
o st, Sp(My, Fr) > Po (ks Ak © My, Xic © Fr),
s.t., Explanation is Strong Enough Se(My, Fy) > _P<I>| A — Ay © M, Xj. — Xp, © F)

- Jrs is the label of the second largest prediction probability
— Idea: Find minimal components of a molecule which is both sufficient and necessary

minimize Explanation Complexity

Objectives | Simple (Complexity) Effective (Strength)
Measure #edges, #features Sufficiency Necessity
Method Minimization Factual Counterfactual

43
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Sufficiency and Necessity of Explanations

« S = N: S is a sufficient condition for N
« 7N = ~S: N is a necessary condition for S

44

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.
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Sufficiency and Necessity of Explanations

« S = N: S is a sufficient condition for N
« 7N = ~S: N is a necessary condition for S

« Probability of Sufficient (PS): If we only keep the nodes/edges in the explanation, the
prediction result will be the same, then we say the explanation is sufficient

e PS: percentage of molecules whose explanation sub-graph is sufficient

) Nr 9
GieG PSk 1, if 9] = i v\ e
PS = , where ps; = k N
|G %k 0, else . { \ '
. SRS
where §; = argmax Pp(c | Ay © M, X ©F) @ v
ceC P G
H ® H

45

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.
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Sufficiency and Necessity of Explanations

« S = N: S is a sufficient condition for N
« 7N = ~S: N is a necessary condition for S

« Probability of Necessity (PN): If we remove the nodes/edges in the explanation, the
prediction result will change, then we say the explanation is necessary

e PN: percentage of molecules whose explanation sub-graph is necessary

o
al A \
n 1, if g/ + c ¢ @
PN = ZGkEQ p k’ shere pn; = yk Yk ° . c/ ~ao ©
|G| 0, else \ L ©
. ® e~ © @
where §j; = argmax Py (c | Ag — Ag © My, X — Xi © Fy N
ceC C """"""" '
H ® H
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[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.
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Datasets for Evaluation

Dataset #graph | #ave n | #ave e | #class | #feat | task |gt
BA-Shapes 1 700 | 4100 4 - | node |V
Tree-Cycles 1 871 | 1950 2 - | node |V
Mutag 4337 | 3032 [ 30.77 | 2 | 14 |graph
Mutag) 2301 | 31.74 | 3254 | 2 | 14 |graph|V
NCI1 4110 | 29.87 | 32.30 2 37 |graph
CiteSeer 1 3312 | 4732 6 |3703 | node

47

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.
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Evaluate Explanation Quality with PN, PS

(without ground-truth explanation)

Models BA-Shapes Tree-Cycles Mutag

PN% PS% Fns% #exp PN% PS% Fns% #exp PN% PS% Fns% #exp
GNNExplainerT 72.19 45.62 5591 6.00 100.00 59.72 7478 6.00 7179 97.44 82.67 15.00
CF-GNNExplainer 7534 41.10 53.18 5.79 100.00 31.94 4842 344 96.26 7.48 13.88 7.72
Gem' 6136 52.27 5645 6.00 100.00 2989 46.02 6.00 83.01 76.42 79.58 15.00
CF? 76.73 68.22 72.07 6.21 100.00 81.94 90.08 5.81 97.44 100.00 98.70 14.95
Models NCI1 CiteSeer (edge) CiteSeer (feature)

PN% PS% Fns% #exp PN% PS% Fns% #exp PN% PS% Fns% #exp
GNNE)(plainerJr 92.13 62.16 7424 15.00 66.67 90.05 76.61 5.00 71.64 99.50 72.79 60.00
CF-GNNExplainer 97.14 3143 4749 7.75 69.50 82.00 75.23 258 72.14 9254 81.07 7291
Gem' 99.03 52.15 6832 15.00 61.05 72.67 6636 5.00 - - - -
CF? 100.00 63.831 7791 1770 71.00 9450 81.08 3.18 7463 95.02 83.60 62.73

48

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.
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Evaluate Explanation Quality with Accuracy

(with ground-truth explanation)

Models BA-Shapes Tree-Cycles Mutag),
Acc% Pr% Re% F1% Acc% Pr% Re% F1% Acc% Pr% Re% F1%
GNNExplainerJr 95.25 60.08 60.08 60.08 92.78 68.06 68.06 68.06 9696 59.71 85.17 68.85
CF-GNNExplainer 9439 67.19 54.11 56.79 90.27 87.40 4745 59.10 9691 66.09 39.46 47.39
Gem' 96.97 64.16 64.16 64.16 89.88 57.23 57.23 57.23 96.43 63.12 47.11 54.68
CF? 96.37 73.15 68.18 66.61 93.26 84.92 73.84 75.69 97.34 6528 88.59 72.56
Kendall’'s T and Spearman’s p correlation scores
BA-Shapes Tree-Cycles Muta
Models P y 80 2PN - PS
T plT T p7T T p1 Foo =
NS —
Fys &F; 1.00 1.00 1.00 100 1.00 1.00 PN + PS
Fns & Acc 0.66 0.79 1.00 1.00 0.66 0.79
PN/PS-based evaluation is highly consistent with ground-truth-based evaluation.
We can use PN/PS to evaluate explanations when ground-truth is not available
49
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Factual vs. Counterfactual Explanations

minimize ||M; |1 + ||F;|l1 + A(aLf + (1 - a)Lc)

0.0 0.2 0.4 0.6 0.8 1.0
alpha
(a) Influence of @ on BA-Shapes

1.0

0.9

0.8

0.7 -

0.6 -

0.5

0.4

0.0 0.2 0.4 0.6 0.8 1.0
alpha
(b) Influence of @ on Mutag,

Both factual and counterfactual reasoning are important
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Explainable Al for Biodiversity Conservation

» Task: Predict if a species is endangered or not [15]
— An important nature-oriented task
— A dynamic task: species that were not endangered may become endangered now, and vice versa

— Needs dynamic monitoring and fast reaction
* E.g., IUCN Red List maintains the status for animal species
» Critically Endangered, Endangered, Extinct, Extinct in the Wild, Least Concern, Low Risk, Threatened, Vulnerable

More than 32,000 species
are threatened with extinction

That is still 27% of all assessed species.

SELECTED
CRUSTACEANS

41% 26% 34% 30% 33% 28%

AMPHIBIANS MAMMALS CONIFERS SHARKS & RAYS REEF CORALS

GLOBAL ANIMALIA - AMPHIBIA

Platypus Titan Arum Chinese Three-striped Box Turtle Reticulate Leaf Frog
Ornithorhynchus anatinus Amorphophallus titanum Cuora trifasciata Pithecopus ayeaye
\L Decreasing @ \1/ Decreasing @ \b Decreasing @ Unknown @

From the IUCN (International Union for Conservation of Nature) Red List of Threatened Species https://www.iucnredlist.org

[19] M. Mukadam, M. Jayaram, and Y. Zhang. “A Representation Learning Approach to Animal Biodiversity Conservation”. COLING 2020. 51
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Explainable Al for Biodiversity Conservation

* Machine learning may help as an assistive tool

— Why Machine Learning may work?

— Intuition: Species become endangered mostly because habitat destruction due to human activities

— If we know one species in a habitat is endangered, other species in the same habitat may too
Habitat (and other useful information) can be found in Wikipedia

— Information is dynamic/up-to-date due to real-time edits

e 3
W

A

3
Q
“

Y R

WIKIPEDIA
The Free Encyclopedia

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help
Learn to edit

Article Talk

a Not logged il

Read Edit View histc

White-bellied hummingbird

From Wikipedia, the free encyclopedia

The white-bellied hummingbird (Elliotomyia chionogaster) is a species of hummingbird in the
family Trochilidae. It is found at forest edge, woodland, scrub and gardens in the Andes, ranging
from northern Peru south through Bolivia to north-western Argentina. There are also lowland

populations in Santa Cruz, Bolivia, and Mato Grosso, Brazil.

Description |edit]

Its upperparts are green and its underparts are white. Unlike other similar hummingbirds in its
range (for example the green-and-white hummingbird), the basal half of the inner webs of the
rectrices are white, but this is typically only visible from below.
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Explainable Al for Biodiversity Conservation

« Wikipedia text is not enough

— Due to Interspecific Competition, one species get endangered may imply another competitor
species get more populated

« Solution: Graph-Text Co-Learning for Animal Biodiversity Conservation [15]
— Animal taxonomy graph shows the relationship between species

K : T Graph
Carpiodes carpio e e

EEEEEE—— (—~
h O
iy
€ Graph O rArF
Ictiobus bubalus Carpiodes Representation N
. Carpiodes velifer LANTHRD
pa il Ictiobinae ©
ctiobus cyprinellus X _ ~— N 0 - Endangered
Carpiodes cyprinus 1 - Least Concerned
. s : Ictiobus
Ictiobus meridionalis Document i
Embeddings i
. H —>» BNN
Ictiobus labiosus - ) ]
./
Wikipedia

Ictiobus labiosus Text Corpus (' Confidence ¢ )
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Explainable Al for Biodiversity Conservation

Metric Value
Total animal species 45,170
Endangered animal species 10,947
Least-concern animal species 27,053
Data-Deficient species 7,170
Average length of Wikipedia documents 146
in training corpus (number of words)

Documents with length more than average length 13,970
Documents with length less than average length 31,200
Documents that explicitly contain Red List status information | 14,253
BNN training data points 14,083
BNN test data points (¢ > 0.75) 3,521

Model F1 Score -AUC
RF w/ node2vec 0.862 0.784
RF w/ doc2vec 0.869 0.820
RF w/ node2vec + doc2vec 0.860 0.827
MLP w/ node2vec 0.843 0.729
MLP w/ doc2vec 0.886 0.864
MLP w/ node2vec + doc2vec 0.885 0.873
BNN w/ node2vec + doc2vec + ¢ > 0.75 0.856 0.868
BNN w/ node2vec + doc2vec + ¢ > 0.9 0.889 0.911

Dataset statistics (data collected from Wikipedia, IUCN, and ITIS)

Prediction accuracy

Nycticryphes semicollaris - The South American painted-snipe (Nycticryphes semicollaris), or lesser
painted-snipe, is a shorebird in the family Rostratulidae. There are two other species in its family, the
Australian painted-snipe and the greater painted-snipe. Measurements: 19-23 cm in length; 65-86 g

in weight. Vocalizations: A hoarse, hissing “wee-00” has been recorded from birds in captivity.
Distribution and habitat: The species is found in the southern third of South America, from southern
Brazil, Paraguay, and Uruguay to Chile and Argentina. It inhabits lowland freshwater wetlands, including
wet grasslands. Breeding: South American painted-snipes are monogamous and breed semi-colonially.
The nest is a shallow cup on the ground in a wetland, with a clutch of 2-3 eggs. Breeding has been
recorded mainly from July to February. Feeding: The South American painted-snipe is omnivorous,
feeding by probing in mud and shallow water for small animals and seeds, often at dusk.

Attention-based Explanation

IUCN: International Union for Conservation of Nature (for ground-truth label)
ITIS: Integrated Taxonomic Information System (for Animal taxonomy graph) https://www.itis.gov
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Summary

« Rediscover Kepler's laws and Newton’s laws from Tycho's

ancient data [1]
— A good example to demonstrate the idea of XAl-driven scientific research
— Pay our respect to some of the greatest minds in human history

« More “practical” Examples
— Explainable Al for Molecular Property Prediction [2]
— Explainable Al for Biodiversity Conservation [3]

* [1] Zelong Li, Jianchao Ji, and Yongfeng Zhang. “From Kepler to Newton: Explainable Al for Science
Discovery.” In ICML Al for Science 2022.

* [2] Juntao Tan, Shijie Geng, Zuohui Fu, Yinggiang Ge, Shuyuan Xu, Yunqi Li, and Yongfeng Zhang.
"Learning and evaluating graph neural network explanations based on counterfactual and factual
reasoning." In Proceedings of the ACM Web Conference 2022.

*  [3] Meet Mukadam, Mandhara Jayaram, and Yongfeng Zhang. "A Representation Learning
Approach to Animal Biodiversity Conservation." In Proceedings of the 28th International Conference
on Computational Linguistics. 2020.

95



RUTGERS

Yongfeng Zhang

Department of Computer Science, Rutgers University
yongfeng.zhang@rutgers.edu

56


mailto:yongfeng.zhang@rutgers.edu

