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AI helps in many Research Areas

• A (very rough) spectrum of research discipline system
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AI for Science: Some Examples

• AI for Drug Discovery
– Molecule Generation and Property Prediction

• Protein Structure Prediction
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NN = Soluble? Toxic? Crosses the BBB?

MAGELVSFAVNKLWDLLSHEYTLFQGVEDQVAELKSDLNL
LKSFLKDADAKKHTSALVRYCVEEIKDIVYDAEDVLETFV
QKEKLGTTSGIRKHIKRLTCIVPDRREIALYIGHVSKRIT
RVIRDMQSFGVQQMIVDDYMHPLRNREREIRRTFPKDNES
GFVALEENVKKLVGYFVEEDNYQVVSITGMGGLGKTTLAR
QVFNHDMVTKKFDKLAWVSVSQDFTLKNVWQNILGDLKPK
EEETKEEEKKILEMTEYTLQRELYQLLEMSKSLIVLDDIW
KKEDWEVIKPIFPPTKGWKLLLTSRNESIVAPTNTKYFNF
KPECLKTDDSWKLFQRIAFPINDASEFEIDEEMEKLGEKM
IEHCGGLPLAIKVLGGMLAEKYTSHDWRRLSENIGSHLVG
GRTNFNDDNNNSCNYVLSLSFEELPSYLKHCFLYLAHFPE
DYEIKVENLSYYWAAEEIFQPRHYDGEIIRDVGDVYIEEL
VRRNMVISERDVKTSRFETCHLHDMMREVCLLKAKEENFL
QITSNPPSTANFQSTVTSRRLVYQYPTTLHVEKDINNPKL
…

AlphaFold



The Explainability Crisis
• A Key Problem with current AI models

– Most AI prediction methods are not explainable
• They can make good predictions based on massive data and complicated 

models, but are less capable of explaining the prediction results and reveal 
the insights to human scientists

• They can produce prediction results, but hardly explains why the results are 
predicted they way they are

• Origin of the Problem
– Difference from traditional methods: Whitebox vs. Blackbox models
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e.g., (partial) differentiable equation e.g., deep neural networks

Input Prediction Output

Navier-Stokes equation Multiple Layer Perceptron (MLP)



Why Explainable AI for Science?
• The essence of scientific research is to understand the “why”

– Not only know how but also know why
• Know how: Blackbox AI for Prediction; Know why: Explainable AI for Explanation

– In many cases, understanding the “why” behind the result is even more 
important than just knowing the result itself, because knowing the why 
implies real growth of knowledge and helps in making critical decisions

– Furthermore, if AI accumulates more and more dark knowledge that are not 
understandable to humans (which is already happening), it may eventually 
lead to a singularity where humans are lagged behind on the conquest of 
knowledge than machines
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Image credit: https://www.webpages.uidaho.edu/vakanski/Technological%20Singularity.html

https://www.webpages.uidaho.edu/vakanski/Technological%20Singularity.html


The Conquest of “Why” in Science

• The conquest of why has always been the key theme of 
science in human history

• A Legend Example
– The Kepler’s Laws of Planetary Motion
– The Newton’s Law of Universal Gravitation
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Tycho Brahe (1546-1610)
Demark astronomer

Good at astro-observation

Observed and recorded a lot of
data about Mars movement.

Johannes Kepler (1571-1630)
German astronomer, student of Tycho Brahe.

Analyzed Tycho’s data, and discovered the rules
hidden in the data.
The “Kepler’s laws of planetary motion”:

𝑟!

𝑇"
= 𝐾

𝑇: period of circling around the sun, 𝑟: radius

We can
Predict it!

We can
Obverse it!

𝑟!

𝑇"
= 𝐾

Kepler’s Laws of Planetary Motion

Time Position
1 (a,b)
2 (c,d)
3 (e,f)

Time Position
1 (a,b)
2 (c,d)
3 (e,f)



Is the Story Over? No!

We Understand it!
We know Why!

Isaac Newton (1643-1727)
English mathematician, physicist, astronomer, 
theologian, and author.

Proposed the Newton's law of universal gravitation
+ differential calculus:

Naturally derives out the Kepler’s laws of 
planetary motion!

𝑟!

𝑇"
= 𝐾 is because
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Johannes Kepler (1571-1630)
German astronomer, student of Tycho Brahe.

Analyzed Tycho’s data, and discovered the rules
hidden in the data.
The “Kepler’s laws of planetary motion”:

𝑟!

𝑇"
= 𝐾

𝜏: period of circling around the sun, r: radius

We can
Predict it!

𝑟!

𝑇"
= 𝐾

Time Position
1 (a,b)
2 (c,d)
3 (e,f)



Three Key Roles in the Scientific Discovery Process

Observation Analyzation Explanation

𝑟!

𝑇"
= 𝐾

Johannes Kepler (1571-1630)Tycho Brahe (1546-1610) Isaac Newton (1643-1727)
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Time Position
1 (a,b)
2 (c,d)
3 (e,f)



Johannes Kepler (1571-1630)
German astronomer, student of Tycho Brahe.

We can
Predict it!

There could be some rules underlying the data.
I don’t know what it is, but NN can fit any function.
So I’m going to train a NN to fit the data!

It fits the data pretty well!
I can make predictions!

𝑟 = 𝑠𝑜𝑚𝑒 𝑁𝑁(𝑇)

But wait: can this be called scientific discovery?
Science is not only about know HOW, but also know WHY!

Tycho Brahe (1546-1610)
Demark astronomer

Good at astro-observation

Observed and recorded a lot of
data about Mars movement.

We can
Obverse it!

Time Position
1 (a,b)
2 (c,d)
3 (e,f)

What if Kepler had DL in the 16-17th Century?



Johannes Kepler (1571-1630)
German astronomer, student of Tycho Brahe.

We can
Predict it!

There could be some rules underlying the data.
I don’t know what it is, but NN can fit any function.
So I’m going to train a NN to fit the data!

It fits the data pretty well!
I can make predictions!

𝑟 = 𝑠𝑜𝑚𝑒 𝑁𝑁(𝑇)

But wait: can this be called scientific discovery?
Science is not only about know HOW, but also know WHY!

Challenges in Modern Scientific Research

• However, manually analyzing data 
as Kepler did is very challenging in 
modern scientific research

– Since the amount of data is huge
– e.g., produced by astronomical 

telescope and particle colliders

• We indeed need AI for data 
analyses and model learning
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Johannes Kepler (1571-1630)
German astronomer, student of Tycho Brahe.

We can
Predict it!

But wait: can this be called scientific discovery?
Science is not only about know HOW, but also know WHY!

Challenges in Modern Scientific Research

We Understand it!
We know Why!

Isaac Newton (1643-1727)

Explainable AI (XAI) plays the role of Newton

Interpret and explain the learned (black-box) 
model, reveal its insights to human scientists

Help us better understand the nature.
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There could be some rules underlying the data.
I don’t know what it is, but NN can fit any function.
So I’m going to train a NN to fit the data!

It fits the data pretty well!
I can make predictions!

𝑟 = 𝑠𝑜𝑚𝑒 𝑁𝑁(𝑇)



Three Key Roles in the Scientific Discovery Process

Data Collection Model Learning Model Interpretation (XAI)

Johannes Kepler (1571-1630)Tycho Brahe (1546-1610) Isaac Newton (1643-1727)

Almost automated Many available methods Still needs much exploration
14

Time Position
1 (a,b)
2 (c,d)
3 (e,f)

𝜏"

𝑟!
= 𝐾

Using more CS/AI language

Observation Analyzation Explanation



A Paradigm Shift (again) for Scientific Research

• From Theory-driven to Data-driven (back to Kepler), but with 
Explainable AI (plus Newton)
– Blackbox AI for Prediction (the Kepler model)
– Explainable AI for Explanation (the Newton model)

• A Paradigm Shift in Scientific Discovery
– Explainable AI replaces manual hypothesis generation
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Three Examples on Explainable AI for Science

• Rediscover Kepler’s laws and Newton’s laws from Tycho’s
ancient data [1]
– A good example to demonstrate the idea of XAI-driven scientific research
– Pay our respect to some of the greatest minds in human history

• More “practical” Examples
– Explainable AI for Molecular Property Prediction [2]
– Explainable AI for Biodiversity Conservation [3]

• [1] Zelong Li, Jianchao Ji, and Yongfeng Zhang. “From Kepler to Newton: Explainable AI for Science 
Discovery.” In ICML AI for Science 2022.

• [2] Juntao Tan, Shijie Geng, Zuohui Fu, Yingqiang Ge, Shuyuan Xu, Yunqi Li, and Yongfeng Zhang. 
"Learning and evaluating graph neural network explanations based on counterfactual and factual 
reasoning." In Proceedings of the ACM Web Conference 2022.

• [3] Meet Mukadam, Mandhara Jayaram, and Yongfeng Zhang. "A Representation Learning 
Approach to Animal Biodiversity Conservation." In Proceedings of the 28th International Conference 
on Computational Linguistics. 2020.
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From Kepler to Newton: A Case Study

• A New Paradigm for Scientific Discovery
– Model Learning and Interpretation automatically generates hypothesis

• Use the paradigm to rediscover:
– Kepler’s Laws of Planetary Motion
– Newton’s Law of Universal Gravitation

17



Kepler’s Reasoning Process

• At Kepler’s time, there were three models of planetary motion
– The Ptolemaic, Copernican and Tychonic systems
– Kepler mentioned that these three systems all had high prediction 

accuracy in the near term, but diverged and failed to fit historical and 
future observations in the long term

– Propose a new hypothesis: the orbit of a planet is an ellipse with the 
Sun at one of the two foci (Kepler’s first law of planetary motion)

– Then he used the observation data to test his hypothesis

• We show the hypothesis-free scientific discovery process 
based on Explainable AI
– We directly start from data 

to rediscover the Kepler’s 
laws.
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Dataset: Ancient Mars Data from Tycho Brahe

• Data copied from Kepler’s book 
Astronomia Nova (1609)

• Three main variables
– Time: 𝑡
– Mars angular position: 𝜃
– Sun-Mars distance: 𝑟
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Blackbox and Whitebox Models
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• The black-box model for Prediction and Data Augmentation
– Simple Multiple Layer Perceptron (MLP) neural network

• The white-box model for Explanation
– Symbolic Regression: Transform the MLP neural network into a 

symbolic equation

𝑦 = 𝜎(𝒘$
%𝜎 𝑾&

%𝜎 𝑾'
%𝒙 + 𝒃' + 𝒃& + 𝑏$)
1st Layer

2nd  Layer

3rd  Layer



Rediscover Kepler’s Laws based on Explainable AI

• Black-box Model (DNN) for Prediction and Data Augmentation
𝑟 = 𝑁𝑁(𝜃)

Use 90% data points for training and 10% for validation.
MSE on training data: 4×10#$$; MSE on validation data: 7×10#%
Blackbox neural networks can already make accurate predictions, though we don’t understand the insight



• White-box Model for Explanation
– Symbolic regression based on the augmented data

22

Rediscover Kepler’s Laws based on Explainable AI



• Physical Interpretation of the Results
– Mars orbit is an ellipse, and AI-derived eccentricity is 0.0927177
– Very close to Kepler’s result 0.09264 (relative error < 0.1%) and modern 

result 0.09341233 (relative error < 0.7%)

– 𝑟!"# = 𝑓[𝜃 = −0.544536 (−31.2°)], indicating closest Mars Opposition 
in August, which is consistent with historical observations

• 31.2/360 × 365 ≈ 32 days ahead of the fall equinox, thus in August

23

Rediscover Kepler’s Laws based on Explainable AI



Rediscover Newton’s Laws based on Explainable AI

• Black-box Model for Prediction and Data Augmentation
• We already have 𝑟 = 𝑓(𝜃), we want 𝜃 = 𝑔(𝑡)

– So we can predict the position of Mars (𝜃, 𝑟) for any given time 𝑡

𝜃 = 𝑁𝑁(𝑡)

Use 90% data points for training and 10% for validation.
MSE on training data: 7×10#%; MSE on validation data: 1.5×10#&
Blackbox neural networks can already make accurate predictions, though we don’t understand the insight



Rediscover Newton’s Laws based on Explainable AI

• Deep Learning for Prediction and Data Augmentation
– The simple experiment implies a significant role of machine 

learning (especially deep learning) in scientific discovery

• The real 𝑡 − 𝜃 relation based on advanced math tools 
and deeper understandings of planetary motion:

– i.e., we can express 𝑡 as a function of 𝜃, i.e., 𝑡 = ℎ(𝜃), however, 
we can hardly find a function to express 𝜃 as 𝑡, i.e., 𝜃 = 𝑔(𝑡), 
since it is a transcendental equation



Rediscover Newton’s Laws based on Explainable AI

• However, we still want some 𝜃-as-𝑡 relationship
– We already have 𝑟 = 𝑓(𝜃), if we have 𝜃 = 𝑔(𝑡), then we can 

predict the position of Mars (𝑟, 𝜃) for any time 𝑡
• We can adopt deep neural networks to learn a black-box 

predictor 𝜃 = 𝑁𝑁(𝑡)
– Universal Approximation Theorem (UAT) [4,5,6]

• A network containing a finite number of neurons can approximate arbitrarily 
well any real-valued continuous functions on compact subsets of Rn.

– 𝜃 = 𝑁𝑁(𝑡) is differentiable!
• We can conduct mathematical analysis on the 𝜃-as-𝑡 relationship

• 𝜔 = $%%(')
$'

, 𝑎 = $!%%(')
$'!

• Makes it possible to analyze the relationship between many 
variables that are otherwise difficult to calculate

[4] Balazs Csanad Csaji (2001). Approximation with Artificial Neural Networks. Faculty of Sciences, Etvs Lornd University, Hungary 24(48:7).
[5] Cybenko, G. (1989). Approximations by superpositions of sigmoidal functions. Mathematics of Control, Signals, and Systems, 2(4):303–314.
[6] Hornik, Kurt (1991). Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2): 251-257.



Rediscover Newton’s Laws based on Explainable AI

• White-box Model for Explanation
– Variable augmentation (𝑡" , 𝜃" , 𝑟" , 𝜔")

– 𝜃" = 𝑁𝑁 𝑡" , 𝑟" = 𝑓 𝜃" = 𝑓 𝑁𝑁 𝑡" ,	𝜔" =
)) '"*+ ,))('",+)

-+

– Augment variable without prior assumption: (𝑡" , 𝜃" , 𝑟" , 𝑟"-, 𝑟"., 𝜔" , 𝜔"-, 𝜔".)
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Rediscover Newton’s Laws based on Explainable AI

• Physical Interpretation of the Results

– 𝑟.𝜔- is close to modern result: 𝑟.𝜔- = 𝐺𝑀 = 2.96×10,/ 𝐴𝑈.𝑑𝑎𝑦,-
• Relative error < 0.8%

– Acceleration 𝑎 = 𝑟𝜔- = 0.000-23/24
5!

∝ 4
5!

– Leading to the inverse-square law of acceleration and gravitation
– Also Kepler’s third law

• !'

"( =
#
$%( = 7.56086×10&'𝐴𝑈(𝑑𝑎𝑦&)

• Close to Kepler’s result 7.5×10&'𝐴𝑈(𝑑𝑎𝑦&)

• Relative error < 0.82%
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Recap
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The Molecule Classification Problem

30

• Predicting the function of molecules
– A fundamental problem in many chemistry/biological/medical research tasks, e.g., drug discovery

• Mathematically, molecule is a graph
– Current approaches use Graph Neural Networks (GNN) for prediction
– E.g., Predict if a molecule is soluble, toxic, or can pass the Blood-Brain Barrier (BBB)
– A binary classification problem

• However, we want to know why the model believes in the classification result

GNN = Yes / No

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y, Li, Y. Zhang. ” Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning.” WWW 2022.



Explainable Graph Neural Networks

31

• Our goal is to develop Explainable Graph Neural Networks (XGNN)

XGNN = Yes / No + Explanation

GNN = Yes / No



Factual and Counterfactual Explanations
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• Example: Molecule mutagenetic prediction
– If the GNN model predicts the molecule as mutagenetic, why?



Factual and Counterfactual Explanations
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• Factual explanation seeks a sufficient condition
– The molecule will be mutagenetic with the highlighted bonds



Factual and Counterfactual Explanations
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• Counterfactual explanation seeks a necessary condition
– The molecule will not be mutagenetic without the highlighted bonds



Factual and Counterfactual Explanations
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• Factual and Counterfactual explanation seeks a compact (both 
sufficient and necessary) condition
– The molecule will be mutagenetic with the highlighted bonds
– The molecule will not be mutagenetic without the highlighted bonds
– No more, no less, just OK



How to Find the Explanations?

• A Given graph 𝐺0 = 𝒱0 , ℰ0 .  Adjacency matrix 𝐴0 ∈
{0,1} 𝒱6 × 𝒱6 . Node feature matrix 𝑋0 ∈ ℝ 𝒱6 ×2. 

• The ground-truth class label is 𝑦0 ∈ 𝐶 (mutagenetic, non-
mutagenetic).

• The GNN will predict the estimated label 5𝑦0 for 𝐺0 by:

• Generate edge mask 𝑀0 ∈ {0, 1} 𝒱6 × 𝒱6 , feature mask 𝐹0 ∈ {0,
1} 𝒱6 ×2.

• Explanation: Sub-graph 𝐴0⨀𝑀0, sub-features 𝑋0⨀𝐹0.

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.

36
Explanation Sub-Graph



How to Find the Explanations?

• Factual Reasoning: “Given A already happened, will B happen?”.
• Factual Condition:

• Counterfactual Reasoning: “If A did not happen, will B still 
happen?”

• Counterfactual Condition:

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.

37

The remaining edges

The removed edges



What are good Explanations? Simple and Effective

• Occam’s Razor Principle
– If two explanations are equally effective in explaining the results, we 

prefer the simpler explanation than the complex one.

• To character Simpleness
– Explanation Complexity

• To character Effectiveness
– Factual Explanation Strength

– Counterfactual Explanation Strength

38

How many edges are 
included in the explanation

How many features are 
included in the explanation

Both should be large enough to satisfy the conditions



Complexity vs. Strength

• Two orthogonal concepts

ComplexSimple

Weak

Strong

Complex and Strong 
Explanations

Simple and Strong 
Explanations

Simple but Weak
Explanations

Complex but Weak
Explanations
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Complexity vs. Strength

• Two orthogonal concepts

ComplexSimple

Weak

Strong

Complex and Strong 
Explanations

Simple and Strong 
Explanations

Simple but Weak
Explanations

Complex but Weak
Explanations
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Complexity vs. Strength

• Two orthogonal concepts

ComplexSimple

Weak

Strong

Complex and Strong 
Explanations

Simple and Strong 
Explanations

Simple but Weak
Explanations

Complex but Weak
Explanations
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Counterfactual Learning and Reasoning

• Seek simple and effective explanations

– 5𝑦),+ is the label of the second largest prediction probability
– Idea: Find minimal components of a molecule which is both sufficient and necessary

• Relaxed Optimization based on Lagrange Multiplier for model learning
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Counterfactual Learning and Reasoning

• Seek simple and effective explanations

– 5𝑦),+ is the label of the second largest prediction probability
– Idea: Find minimal components of a molecule which is both sufficient and necessary

43

Objectives Simple (Complexity) Effective (Strength)

Measure #edges, #features Sufficiency Necessity

Method Minimization Factual Counterfactual



Sufficiency and Necessity of Explanations
• S ⇒ N: S is a sufficient condition for N
• ¬N ⇒ ¬S: N is a necessary condition for S

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.
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Sufficiency and Necessity of Explanations
• S ⇒ N: S is a sufficient condition for N
• ¬N ⇒ ¬S: N is a necessary condition for S

• Probability of Sufficient (PS): If we only keep the nodes/edges in the explanation, the 
prediction result will be the same, then we say the explanation is sufficient

• PS: percentage of molecules whose explanation sub-graph is sufficient

45

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.



Sufficiency and Necessity of Explanations
• S ⇒ N: S is a sufficient condition for N
• ¬N ⇒ ¬S: N is a necessary condition for S

• Probability of Necessity (PN): If we remove the nodes/edges in the explanation, the 
prediction result will change, then we say the explanation is necessary

• PN: percentage of molecules whose explanation sub-graph is necessary

46

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.



Datasets for Evaluation

47

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.



Evaluate Explanation Quality with PN, PS

48

(without ground-truth explanation)

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.



Evaluate Explanation Quality with Accuracy

49

(with ground-truth explanation)

𝐹HI =
2𝑃𝑁 5 𝑃𝑆
𝑃𝑁 + 𝑃𝑆

PN/PS-based evaluation is highly consistent with ground-truth-based evaluation.
We can use PN/PS to evaluate explanations when ground-truth is not available

Kendall’s 𝜏 and Spearman’s 𝜌 correlation scores

[2] J. Tan, S. Geng, Z. Fu, Y. Ge, S. Xu, Y. Li and Y. Zhang. “Learning and Evaluating Graph Neural Network Explanations based on Counterfactual and Factual Reasoning”, WWW2022.



Factual vs. Counterfactual Explanations

50

Both factual and counterfactual reasoning are important



Explainable AI for Biodiversity Conservation

51

• Task: Predict if a species is endangered or not [15]
– An important nature-oriented task
– A dynamic task: species that were not endangered may become endangered now, and vice versa
– Needs dynamic monitoring and fast reaction

• E.g., IUCN Red List maintains the status for animal species
• Critically Endangered, Endangered, Extinct, Extinct in the Wild, Least Concern, Low Risk, Threatened, Vulnerable

[19] M. Mukadam, M. Jayaram, and Y. Zhang. “A Representation Learning Approach to Animal Biodiversity Conservation”. COLING 2020.

From the IUCN (International Union for Conservation of Nature) Red List of Threatened Species https://www.iucnredlist.org

https://www.iucnredlist.org/


Explainable AI for Biodiversity Conservation
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• Machine learning may help as an assistive tool
– Why Machine Learning may work?
– Intuition: Species become endangered mostly because habitat destruction due to human activities
– If we know one species in a habitat is endangered, other species in the same habitat may too

• Habitat (and other useful information) can be found in Wikipedia
– Information is dynamic/up-to-date due to real-time edits



Explainable AI for Biodiversity Conservation

53
[19] M. Mukadam, M. Jayaram, and Y. Zhang. “A Representation Learning Approach to Animal Biodiversity Conservation”. COLING 2020.

• Wikipedia text is not enough
– Due to Interspecific Competition, one species get endangered may imply another competitor 

species get more populated

• Solution: Graph-Text Co-Learning for Animal Biodiversity Conservation [15]
– Animal taxonomy graph shows the relationship between species



Explainable AI for Biodiversity Conservation
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Dataset statistics (data collected from Wikipedia, IUCN, and ITIS)

IUCN: International Union for Conservation of Nature (for ground-truth label)
ITIS: Integrated Taxonomic Information System (for Animal taxonomy graph) https://www.itis.gov

Prediction accuracy

Nycticryphes semicollaris - The South American painted-snipe (Nycticryphes semicollaris), or lesser 
painted-snipe, is a shorebird in the family Rostratulidae. There are two other species in its family, the 
Australian painted-snipe and the greater painted-snipe. Measurements: 19–23 cm in length; 65–86 g 
in weight. Vocalizations: A hoarse, hissing “wee-oo” has been recorded from birds in captivity. 
Distribution and habitat: The species is found in the southern third of South America, from southern 
Brazil, Paraguay, and Uruguay to Chile and Argentina. It inhabits lowland freshwater wetlands, including 
wet grasslands. Breeding: South American painted-snipes are monogamous and breed semi-colonially. 
The nest is a shallow cup on the ground in a wetland, with a clutch of 2-3 eggs. Breeding has been 
recorded mainly from July to February. Feeding: The South American painted-snipe is omnivorous, 
feeding by probing in mud and shallow water for small animals and seeds, often at dusk.

Attention-based Explanation

https://www.itis.gov/


Summary

• Rediscover Kepler’s laws and Newton’s laws from Tycho’s
ancient data [1]
– A good example to demonstrate the idea of XAI-driven scientific research
– Pay our respect to some of the greatest minds in human history

• More “practical” Examples
– Explainable AI for Molecular Property Prediction [2]
– Explainable AI for Biodiversity Conservation [3]

• [1] Zelong Li, Jianchao Ji, and Yongfeng Zhang. “From Kepler to Newton: Explainable AI for Science 
Discovery.” In ICML AI for Science 2022.

• [2] Juntao Tan, Shijie Geng, Zuohui Fu, Yingqiang Ge, Shuyuan Xu, Yunqi Li, and Yongfeng Zhang. 
"Learning and evaluating graph neural network explanations based on counterfactual and factual 
reasoning." In Proceedings of the ACM Web Conference 2022.

• [3] Meet Mukadam, Mandhara Jayaram, and Yongfeng Zhang. "A Representation Learning 
Approach to Animal Biodiversity Conservation." In Proceedings of the 28th International Conference 
on Computational Linguistics. 2020.
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