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opinions by reviews. Two basic gradients of a review
are the numerical star rating and the review text.

» Many online applications allow users to express his/her
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» A sentiment lexicon is usually constructed
» (Feature Word, Opinion Word, Sentiment Polarity)

» e.9. (Phone quality, perfect, positive)

» Current approaches for polarity labeling assume that
user’'s numerical rating represents the overall sentimen
of the corresponding review text, however, we find that
this assumption is not necessarily true.
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» Phrase-level Sentiment Analysis is important in many
tasks, e.g. product summarization, keywords extraction.
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lé User Rating Analysis and Statistics

/ » Adopt the reviews from DianPing.com

» Each piece of review has an overall rating + three
sub-aspect ratings

» Sub-aspects: Flavor, Environment, Service
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» The percentage of each (of the five) stars on Overall
rating, Flavor, Environment and Service.
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» The percentage of 4+ ratings made by each user.
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Nearly 70% of the users made more than
a half 4+ ratings on overall rating, while
only less than 5% users did so on the
three kinds of sub-aspect ratings.

Users tend to give relatively higher scores
on overall rating, while they tend to ‘tell the
true feelings’ and make relatively lower
scores on detailed sub-aspect ratings.

Environment Service
2.8510

Overall Flavor
Average Rating 3.6432 3.1547 2.8934

Coefficient of Variation 0.1977 0.2522 0.2697 0.2816

» Precisions of review-level sentiment polarity labeling.

Sentiment
classification?

By algorithm

Normalized
overall rating
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Averaged
sub-ratings

Overall
rating

_abel as positive 24

_abel as negative <4 <0 By algorithm

Positive Review 0.8321 0.5438 0.8009 0.9064

Negative Review 0.7248 0.7/839 0.7951 0.8563

Average 0.7970 0.6230 0.7990 0.8900
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» Step1.Review-level Sentiment Classification
» Classify the sentiment of each review [1][2]
> Construct review sentiment matrix X =

positive: x = [1,0]" negative:x = [0,1]"

» Step2.Phrase-level Sentiment Polarity Labeling
» An optimization framework with four constraints.
» 1) Review-level Sentiment Orientation.

neg _ Freq(i, j)
Ry = [AX=X|7 i =1 S, Freq(i, k)

eral Sentiment Lexicon

G(X —Xo)| 7

» 3) Linguistic Heuristics (for ‘and’ / ‘but’)
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» 4) Sentential Sentiment Consistency
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» The Unified Model for Polarity Labeling
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G;; =1 for fixed-sentiment pairs.
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* Phrase-level Polarity Labeling Results }

/ »When fixing A1 = A2 = A3 = A4

Precision Recall F-measure

MP3 Player Dataset (English)

<

By general sentiment lexicon 0.9238

Optimization framework in [3] 0.8269

Our framework with overall rating 0.8288

Our full framework 0.8504*

Restaurant Review Dataset (Chinese)

By general sentiment lexicon 0.9017

Optimization framework in [3] 0.8405

Our framework with overall rating |0.8473

Our framework with subratings 0.8675

Our full framework 0.8879*

» Parameter Analysis

\Aware Sentiment Lexicon: An optimization approach. WWW 2011.
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¢ Demo for Online Product Comparison
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