
8

Neural Feature-aware Recommendation with Signed
Hypergraph Convolutional Network

XU CHEN, Renmin University of China

KUN XIONG, Tsinghua University
YONGFENG ZHANG, Rutgers University
LONG XIA, York University

DAWEI YIN, Baidu Inc., Beijing, China

JIMMY XIANGJI HUANG, York University

Understanding user preference is of key importance for an effective recommender system. For comprehen-

sive user profiling, many efforts have been devoted to extract user feature-level preference from the review

information. Despite effectiveness, existing methods mostly assume linear relationships among the users,

items, and features, and the collaborative information is usually utilized in an implicit and insufficient man-

ner, which limits the recommender capacity in modeling users’ diverse preferences. For bridging this gap, in

this article, we propose to formulate user feature-level preferences by a neural signed hypergraph and care-

fully design the information propagation paths for diffusing collaborative filtering signals in a more effective

manner. By taking the advantages of the neural model’s powerful expressiveness, the complex relationship

patterns among users, items, and features are sufficiently discovered and well utilized. By infusing graph

structure information into the embedding process, the collaborative information is harnessed in a more ex-

plicit and effective way. We conduct comprehensive experiments on real-world datasets to demonstrate the

superiorities of our model.

CCS Concepts: • Information systems → Collaborative filtering; Personalization;

Additional Key Words and Phrases: Recommendation system, collaborative filtering, graph convolutional

network, feature-based recommendation, hypergraph neural network

ACM Reference format:

Xu Chen, Kun Xiong, Yongfeng Zhang, Long Xia, Dawei Yin, and Jimmy Xiangji Huang. 2020. Neural Feature-

aware Recommendation with Signed Hypergraph Convolutional Network. ACM Trans. Inf. Syst. 39, 1, Article

8 (November 2020), 22 pages.

https://doi.org/10.1145/3423322

This research is supported by Beijing Outstanding Young Scientist Program NO. BJJWZYJH012019100020098, National

Natural Science Foundation of China (No. 61832017) and the Natural Sciences and Engineering Research Council (NSERC)

of Canada and the York Research Chairs (YRC) program.

Authors’ addresses: X. Chen (corresponding author), Beijing Key Laboratory of Big Data Management and Analysis Meth-

ods, Gaoling School of Artificial Intelligence, Renmin University of China; email: successcx@gmail.com; K. Xiong, School

of Software, Tsinghua University; email: xk18@mails.tsinghua.edu.cn; Y. Zhang, Department of Computer Science, Rutgers

University; email: yongfeng.zhang@rutgers.edu; L. Xia and J. X. Huang, School of Information Technology, York Univer-

sity; emails: {longxia, jhuang}@yorku.ca; D. Yin, Baidu Inc., Beijing, China; email: yindawei@acm.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1046-8188/2020/11-ART8 $15.00

https://doi.org/10.1145/3423322

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

https://doi.org/10.1145/3423322
mailto:permissions@acm.org
https://doi.org/10.1145/3423322

8:2 X. Chen et al.

1 INTRODUCTION

Recommender system, as an effective information filtering method, has been deployed in many
real-world applications, ranging from e-commerce [28], video sharing websites [14], to social net-
works [40] and online news platforms [50]. The core of a successful recommender system lies in
the accurate understanding of individual user preferences. For comprehensive user modeling, re-
cent years have witnessed an emerging trend on enhancing recommender algorithms with user
review information. Comparing with traditional rating or interaction data, user reviews are much
more informative [23], pooling an extensive wealth of knowledge about user opinions and senti-
ments, which builds a basis formore comprehensive user perception and accurate recommendation
[15, 25, 51].

In the field of review-based recommender systems, there are generally two classes of methods.
On one hand, many models process the review information on the document level. Each user
review is transformed into a semantic vector to improve the user/item representations based on
shallow [25, 29] or deep [5, 51] models. Despite being straightforward, these algorithms inevitably
involve lots of irrelevant review contents (e.g., “Bought it for my girlfriends birthday” in Figure 1)
in the modeling process, which may bias the recommendation performance. On the other hand,
for more clear and accurate modeling, recent methods (a.k.a. feature-aware recommendation) pre-
process the review information by extracting user feature-level preference. The raw user reviews
are formatted into “(user, item, feature, sentiment)” quadruples. As exampled in Figure 1, the review
of “...The image quality of this iPhone is superb. The battery life is great...” will be converted to
“(Elkin Gonzalez V., iPhone X, image quality, positive)” and “(Elkin Gonzalez V., iPhone X, battery
life, positive),” respectively.With such structured review information, models in this line represent
each user, item, or feature as a low-rank latent vector, and capture their correlations based on
coupled matrix [15, 48] or tensor factorization [33]. The finally learned user-feature correlations
are expected to profile users in a more comprehensive and finer-grained manner.
While feature-aware recommendation has achieved many promising results, there are still some

inherent limitations: (1) on the embedding process, mostmethods base their embedding schemes
solely on the ID information while ignoring the entity1 interaction signals, which may yield in-
sufficient collaborative modeling and suboptimal recommendation performance [35]. (2) On the

predictive function, previous models mostly assume linear relationships between different enti-
ties, and the employed linear predictive functions can be less effective in capturing users’ diverse
preferences in real-world scenarios. To bridge these gaps in a unified framework, we propose to re-
visit the task of feature-aware recommendation with a signed hypergraph convolutional network
(see Figure 2(a)). In general, we regard each user, item, or feature as a node, and the hyper-edges
formulate the “user-item-feature” interactions. Unlike previous methods, where the collaborative
information is implicitly inferred from the sparse supervision signals, our model explicitly encodes
the graph structure information into the embedding process for sufficient collaborative modeling.
More specifically, we borrow the idea of graph convolutional network (GCN) [18] for node repre-
sentation. Each node embedding not only encodes its own information, but also will be enhanced
by its local neighborhoods, which has been demonstrated to be a powerful representation learning
strategy [18]. For taming the complex entity relationships, we predict the signs of the hyper-edges
based on a neural architecture, which allows us to lower the risk of model misspecification (i.e.,
imposing incorrect constraints on user-item-feature interactions).
Challenges: While this seems to be a promising direction to improve feature-aware recom-

mendation, it is non-trivial due to the following challenges: (1) how to handle differently signed

1We use “entity” as an umbrella term for a user, an item, or a feature.

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

Neural Feature-aware Recommendation with Signed Hypergraph Convolutional Network 8:3

Fig. 1. Example of extracting user feature-level preference from the review information.

Fig. 2. (a) A toy example of formulating feature-aware recommendation with a signed hypergraph network.
Each node represents a user, an item, or a feature, the hyper-edge with “+1” means the user positively com-
ments on the item feature, while “−1” represents a negative sentiment. (b) Signed hyper-edge corruption.
(c) The user-item-feature graph corresponding to (a), nodes with solid circle form the item-feature subgraph,
and dotted circles make up the user-item subgraph. (d) The tree structure rooted from u1 on (c). Path X indi-
cates consistent semantic between u3 and u1. Path Y suggests contrary characters between u2 and u1. Path
Z is not allowed for information propagation.

hyper-edges in a hypergraph? It is intuitive that a user may express different sentiments towards
an item feature, so in our problem, hyper-edges can be associated with both positive or negative
weights. Although unsigned hypergraph has been studied a lot before [1, 13, 43], few work inves-
tigates the signed one for building recommender models, which need us to carefully design the
corresponding principles. (2) How to conduct neighbor aggregation on a signed hypergraph? While
neighbor aggregation is a standard component in traditional GCN [18], it is still unclear on how
to configure such an operation in a signed hypergraph. The availability of negative hyper-edges
may challenge the fundamental homophily assumption (i.e., connected entities are more similar
than those without links) in unsigned graphs.

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

8:4 X. Chen et al.

Solutions: For solving these challenges, we extend each signed hyperedge into ordinary ones
according to the characters of feature-aware recommendation. And then, we utilize a dual-
embedding mechanism to seamlessly handle differently signed edges and design tailored infor-
mation propagation paths to capture the collaborative filtering (CF) nature in a more effective
manner.
Contributions: In summary, in this article, we propose to improve feature-aware recommen-

dation by a novel SignedHypergraphConvolutionalNetwork (called SHCN for short). Our model
enriches the principles of graph neural network by filling gaps in the convolutional operation for
signed hyper-edges. For adapting review-based recommendation, we design a customized neigh-
bor aggregation strategy for effective user preference delivering. Extensive experiments on real-
world datasets are conducted to verify the effectiveness of our model.

2 PRELIMINARIES

In this section, we describe some basic knowledge of our work.

2.1 Graph Neural Network

In recent years, graph neural network (GNN) has attracted increasing attention from both aca-
demic and industry communities. The powerful capabilities in modeling irregular data structures
make it shine in many areas, such as knowledge graph [38] and social network [18, 32]. In general,
models in this field mostly work on a graph G = (V ,E), whereV is the node set, and E ⊆ V ×V de-
notes the edge set. Mathematically, G is often represented by an adjacency matrixA(∈ R |V |× |V |),
whereAi j = 1 means there is an edge from node i to node j and 0 otherwise. A major limitation of
traditional GNNs is that each edge can only connect two nodes. However, in real-world scenarios,
the object relations are usually more complex than pairwise [43]. Thus, a nature extension of the
traditional graph is the hypergraph [13], where each edge can link more than two nodes (called
hyper-edge). A hypergraph G = (V ,E) is usually represented by an incidence matrixH (∈ RV ×E),
where Hiϵ = 1 means vi ∈ V is connected by hyper-edge ϵ ∈ E, and for each column of H , there
can be more than two “1”s.
Graph convolutional network (GCN). Graph convolutional network is a successful gener-

alization of Euclidean-based convolutional neural network (CNN). It enhances a node embedding
by weighted averaging itself and its neighbors’ representations [18]. More specifically, for a node
i ∈ V on G, the graph convolutional operation is formally defined as:

yi = σ ��
�
ΘT

∑
j ∈Ni∪{i }

x j√
|Ni | |Nj |

��
�
, (1)

where x ∈ RKx and y ∈ RKy are used to distinguish the original and enhanced embeddings.Ni is
the set of one-hop neighbors of node i on G. j indexes the nodes involved in the convolution oper-
ation. 1√

|Ni | |Nj |
lowers the effect of the dominate node. Θ ∈ RKx×Ky is the weighting parameters,

and σ is an active function.

3 PROBLEM DEFINITION

Suppose we have a user setU and an item set I. The interaction set between the users and items
is defined as: T = {(u, i) |u ∈ U , i ∈ I, user u interacted with item i}.2 The review information is
processed according to the above section, and the set of all extracted features is defined as F .
We format user reviewing behaviors as a quad set:W = {(ul , il , fl , sl)}wl=1, where each element

2“interacted” in our problem means the user purchased the item and also reviewed on it.

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

Neural Feature-aware Recommendation with Signed Hypergraph Convolutional Network 8:5

(ul , il , fl , sl) means: user ul (∈ U) mentioned feature fl (∈ F) in her review on item il (∈ I), and
the sentiment is sl (∈ {−1,+1}). Formally, given the dataset of {U ,I,F ,T ,W}, our task is to
learn a predictive function д, such that for each user, it can accurately rank all the items according
to her preference.
Comparing with traditional recommendation task, which focuses on users’ overall preference,

feature-aware recommendation additionally involves user sentiments towards item-specific fea-
tures. The collaborative nature is no longer purely revealed by the item similarities, but also can
be reflected from user feature-level preferences. Feature-aware recommendation looks alike tag
recommendation, since they both model triplet entity interactions. However, they differ funda-
mentally in nature: Tags are mainly used to categorize and manage different items [15], while
features describe item specific attributes, and we can access users’ explicit sentiments towards
these attributes in feature-aware recommendation.
For solving the problem of feature-aware recommendation, we can regard each user, item, or fea-

ture as a node, and a hyper-edge exactly links three nodes corresponding to a “user-item-feature”
interaction. The hypergraph formulation opens the door of leveraging graph convolutional oper-
ation to enhance the performance of feature-aware recommendation. However, the hyper-edges
in our problem can be both positive and negative, which invalidates the key assumption of tradi-
tional unsigned aggregation mechanism. In essence, nodes in an unsigned graph are aggregated
by assuming “connected entities are more similar than those without links.” However, in a signed
hypergraph, connections with different signs represent totally different semantics, which requires
tailored aggregation strategies.

4 THE SHCN MODEL

In this section, we detail our framework from three aspects. On the embedding process, we de-
vise a convolution layer for signed hypergraph to encode structure information into the node
representations. On the predictive function, we learn a neural model to estimate the labels of the
hyper-edges, which relaxes traditional linear assumption on the entity relations. At last, we com-
bine these components and introduce the final optimization function.

4.1 Convolution on Signed Hypergraph

As mentioned before, existing graph convolutional networks mostly concentrate on unsigned
graphs [1, 18, 43]. Few research focuses on a signed hypergraph, let alone its application on the
recommender system.We explore to bridge these gaps in this section and customize our design for
the problem of feature-aware recommendation. In specific, for convolving on a signed hypergraph,
we first expand each signed hyper-edge into ordinary ones (i.e., signed hyper-edge corruption)
and then design a delicate mechanism to pass collaborative information along the derived edges
(i.e., constrained convolution on signed edges).

4.1.1 Signed Hyper-edge Corruption. In the problem of feature-aware recommendation, if a
user positively comments on a feature of an item, we can intuitively infer that: (1) the user may be
interested in the item and (2) the item may exhibit high quality on the feature. Thus, for a positive
user-item-feature interaction (i.e., a hyper-edge with sign “+1”), we corrupt it into two positive
ordinary edges, which connect the user-item and the item-feature, respectively. For example, in
Figure 2(b), hyper-edge “u4-i4-f2” is expanded as “u4-i4” and “i4-f2”with positive signs. Similarly,
for a “-1” signed hyper-edge, we corrupt it as two negative edges, which is exampled in Figure 2(b)
by converting “u1-i1-f1” into “u1-i1” and “i1-f1.” Basically, we transform a three-order hyper-
edge into two semantic-clear pair-wise interactions. We did not make a direct connection between
the user and the feature because: (1) Their relation is not easy to be implied from the hyper-edge

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

8:6 X. Chen et al.

sentiment. Negative label does not necessarily mean the user dislikes the feature; it may also mean
the user actually cares about this feature, but the item does not perform well on it. (2) Previous
studies [15, 31] manifest that the direct modeling between the user and feature is not significant
for the performance improvement in feature-aware recommendation, which is also verified by our
experiments in Section 7.3.4.
Careful readers may have found that different hyperedges may produce the same ordinary

edge in the corruption process. For example, corrupting “u1-i1-f1,” “u1-i1-f2,” and “u1-i1-f3”
in Figure 2(a) will all result in a connection between u1 and i1, and different hyperedges support
different signs on “u1-i1.” In specific, “u1-i1-f1” and “u1-i1-f3” imply positive signs on “u1-i1,”
while “u1-i1-f2” suggests a negative correlation. In such a scenario, we determine the final edge
sign by a “voting” mechanism; that is, if there are more positive supports, the edge is assigned as
“+1,” and more negative supports leadto a “−1” labeling. For the special case that there are exactly
the same positive and negative supports, it is hard to determine the relationship between the cor-
responding nodes, and we cut down this edge to avoid any biased judgment that may limit the
effectiveness of the following convolutional operation. It should be noted that there can be more
advanced methods for resolving collisions, and we left them for future explorations.

4.1.2 Constrained Convolution on Signed Edges. Convolutional operation has been demon-
strated to be useful in promoting the recommendation performance, since it can leverage the
crucial collaborative information in a more explicit and effective manner [45]. However, tradi-
tional graph convolutional network is not applicable for feature-aware recommendation because:
(1) Heterogeneity. There are three types of nodes with distinct semantics in our problem, and
not all paths are reasonable for propagating the crucial collaborative signals. As exampled in
Figure 2(c), information can be safely aggregated along path A with the collaborative intuition
that “two users who positively comment on the same item are similar.” While in path C, although
we know “the user likes the item” and “the item performs well on the feature,” it is less intuitive to
push the feature to the user, since the relations on the path are semantically incompatible, which
makes it hard to reveal the collaborative nature. (2) Signed connection. Instead of only unsigned
edges, the connections in our problem can be both positive and negative. Since the properties
vastly differ between differently signed edges [11], a delicate information propagation mechanism
is needed for more effective and accurate neighbor aggregation. For filling these gaps, we devise
a constrained graph convolution layer for signed edges. We begin by formally defining some key
concepts used in our model and then illustrate the principles.

Definition 1 (User-Item-Feature Graph). For a graph G = (V ,E), ifV = U ∪ I ∪ F , and E ⊆ V ×
V defines the set of corrupted edges from some user-item-feature interactions (see Section 4.1.1),
then we call G as a user-item-feature graph. Example: Figure 2(c) is an example of user-item-
feature graph. We can see there is no edge between the users and features, while an item can be
connected with both of them.

Definition 2 (User-Item Subgraph, Item-Feature Subgraph). Let G = (V ,E) be a user-item-feature
graph. The user-item subgraph GU I is composed of all the user nodes, item nodes, and their con-
nections. The item-feature subgraph GI F includes all the item nodes, feature nodes, and the edges
between them. Example: In Figure 2(c), nodes with solid circles form the item-feature subgraph,
and dotted circles label the user-item subgraph.

Definition 3 (User-Item Path, Item-Feature Path). Let G = (V ,E) be a user-item-feature graph, for
a path v1 → e1 → v2 → e2 → v3 → · · · → en−1 → vn on G, if vi ∈ U ∪ I, ∀ i ∈ [1,n], we call this
path a user-item path, ifvi ∈ I ∪ F , ∀ i ∈ [1,n], we call this path an item-feature path. Example:

In Figure 2(c), A is a user-item path, and B is an item-feature path. Apparently, each path in the

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

Neural Feature-aware Recommendation with Signed Hypergraph Convolutional Network 8:7

user-item subgraph is a user-item path, and all the user-item paths are contained in the user-
item subgraph. The same relations also apply between the item-feature paths and the item-feature
subgraph.

Customized information propagation paths. For reasonable CF modeling, once we got a
user-item-feature graphG from Section 4.1.1, we conduct convolution operation on subgraphsGU I

and GI F separately. This constrains the information propagation to the user-item paths and the
item-feature paths, which can more intuitively reveal the collaborative nature, such as “users with
similar interacted items may be similar” and “items with similar features may be alike.” Formally,
the user and feature embeddings on the lth convolutional layer can be derived by aggregating
embeddings on the (l − 1)th layer as:

s (l)i = σ
���
�
W (l)

xi

⎡⎢⎢⎢⎢⎢⎢⎣

∑
j ∈NY

i

s (l−1)j√
|NY

i | |NY
j |
+ s (l−1)i

⎤⎥⎥⎥⎥⎥⎥⎦

���
�
, (2)

where i is a node ID, with xi ∈ {U ,F } indicating i’s node type (a user node or a feature node).W (l)
xi

is the weighting parameter. Y = { G
U I if xi = U
GI F if xi = F

, and NY
i is the 1-hop neighbor set of node i on

subgraph Y. By recursively applying this formula onGU I andGI F , the user and feature embeddings
are enhanced by assembling their neighbors from multi-hop connections.
For an item, since it can be related with both users and features, we update its embedding from

both user-item and item-feature subgraphs, that is:

s (l)i = σ�
�
W (l)
U

⎡⎢⎢⎢⎢⎢⎢⎣

∑

j ∈NG
U I

i

s (l−1)j√
|N GU I

i | |N GU I

j |
+ s (l−1)i

⎤⎥⎥⎥⎥⎥⎥⎦︸��︷︷��︸
user-item subgraph

A(l)

+W (l)
F

⎡⎢⎢⎢⎢⎢⎢⎣

∑

j ∈NG
I F

i

s (l−1)j√
|N GI Fi | |N GI Fj |

+ s (l−1)i

⎤⎥⎥⎥⎥⎥⎥⎦︸���︷︷���︸
item-feature subgraph

B (l)�
�
,

(3)

where the first under-braced part represents the information propagated from the user-item sub-

graph, while the second one comes from the item-feature subgraph. A(l) and B (l) are adapting
parameters projecting these two parts into the same space.

Dual-embeddingmechanism. Above, we customize the convolutional paths with constraints
inspired from the basic assumption of collaborative filtering. Another challenge in our problem
stems from the signed edges. In traditional unsigned graph, connected nodes are presumed to be
more similar than those without links, and the signals delivering across different paths are con-
sistent and homologous. While when edges can be both positive and negative, the propagated
information becomes more complex, which may reflect extremely different semantics. As exam-
pled in Figure 2(d), path X implies a higher similarity between user u3 and u1, since they both
positively interact with the same item. While according to path Y, neighbor u2 may stand on the
opposite side of user u1, reflecting her reverse preference, which is evidenced in their different
attitudes towards item i2. As a result, nodes u3 and u2 reveal user u1’s properties from different
perspectives, which should be tackled separately.

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

8:8 X. Chen et al.

Fig. 3. Principle of our dual-embedding mechanism for propagating collaborative information on signed
edges.

To handle such signed graph, we can straightforwardly convert it into an unsigned one by either
dropping the negative edges or treating them the same as positive links. However, each of these
methods has significant weaknesses. On one hand, negative connections contain parts of the graph
structure information, and ignoring them may lead to insufficient message passing and limit the
neighbor aggregation effectiveness. On the other hand, the positive and negative links have totally
different meanings and functions; it is unreasonable to trivially equalize them for propagating the
crucial collaborative information.
To overcome these shortcomings, we adopt a dual-embedding mechanism for coherently han-

dling signed edges. As mentioned before, different signed paths may result in various relation-
ships between the end nodes. Traditional unified embedding scheme is less effective in such a
scenario, since it is hard to distinguish semantically different information in a single latent vector,
and there is no tailored aggregation strategy for different path semantics. In our model, rather
than keeping a single representation for each node, we maintain two sub-embeddings for taming
different path semantics in a more explicit and finer-grained manner. The principle of our dual-
embedding scheme is illustrated in Figure 3. Each node is represented by a pair of consistent and
contrary sub-embeddings. The consistent sub-embedding aims to encode information that is sim-
ilar to the node, while the contrary one is used to capture the reverse properties. A target node
can be connected with its neighbor by a positive or negative edge. With the collaborative filtering
assumption, the positive edge keeps the semantic of the information passing through it, while the
negative edge reverses the relation between the end nodes. As a result, the target node’s consis-
tent sub-embedding is achieved by passing the neighbor’s consistent sub-embedding through a
positive edge (A) or contrary sub-embedding from a negative edge (C). Similarly, the neighbor’s
consistent sub-embedding with a negative edge (B) or contrary sub-embedding with a positive
edge (D) contributes the target node’s contrary sub-embedding.

Formally, the sub-embeddings for a user or a feature at the first convolutional layer (i.e., l = 1)
are computed by revising Equation (2) as:

sP (1)i = σ
���
�
W P (1)

xi

⎡⎢⎢⎢⎢⎢⎢⎣

∑
j ∈NY+

i

s0j√
|NY+

i | |NY+
j |
+ s0i

⎤⎥⎥⎥⎥⎥⎥⎦

���
�

sN (1)
i = σ

���
�
W N (1)

xi

⎡⎢⎢⎢⎢⎢⎢⎣

∑
j ∈NY−

i

s0j√
|NY−

i | |NY−
j |
+ s0i

⎤⎥⎥⎥⎥⎥⎥⎦

���
�

, (4)

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

Neural Feature-aware Recommendation with Signed Hypergraph Convolutional Network 8:9

where s0j ∈ Rd0 is the initial node embedding. i and xi indicate the node ID and type as defined

above.W P (1)
xi ∈ Rd1×d0 andW N (1)

xi ∈ Rd1×d0 are weighting parameters. Y discriminates different

subgraphs as mentioned in Equation (2).NY+
i andNY−

i are the sets of positive and negative neigh-

bors of node i in subgraph Y , respectively. In this equation, sP (1)i aggregates information that is

similar to i , while sN (1)
i encodes i’s opposite properties. We can compute the first layer item em-

beddings by modifying Equation (3) in a similar manner.
For multiple convolutional layers, the high-level representations are determined by the lower

ones in a dynamic programming manner. Specifically, the sub-embeddings of a user or feature
node at the lth convolutional layer (l > 1) are computed by:

sP (l)i = σ�
�
W P (l)

xi

⎡⎢⎢⎢⎢⎣

∑
j ∈NY+

i

sP (l−1)j√
|NY+

i | |NY+
j |︸����������������������︷︷����������������������︸

A

+
∑

j ∈NY−
i

sN (l−1)
j√

|NY−
i | |NY−

j |︸����������������������︷︷����������������������︸
B

+sP (l−1)i

⎤⎥⎥⎥⎥⎦
�
�

sN (l)
i = σ�

�
W N (l)

xi

⎡⎢⎢⎢⎢⎣

∑
j ∈NY+

i

sN (l−1)
j√

|NY+
i | |NY+

j |︸����������������������︷︷����������������������︸
C

+
∑

j ∈NY−
i

sP (l−1)j√
|NY−

i | |NY−
j |︸����������������������︷︷����������������������︸

D

+sN (l−1)
i

⎤⎥⎥⎥⎥⎦
�
�

, (5)

where W P (l)
xi ∈ Rdl×dl−1 and W N (l)

xi ∈ Rdl×dl−1 are weighting parameters. The consistent sub-

embedding sP (l)i aggregates information based on A: the consistent sub-embeddings of i’s 1-hop

positive neighbors (i.e., j ∈ NY+
i), and B: the contrary sub-embeddings of i’s 1-hop negative

neighbors (i.e., j ∈ NY−
i). While the contrary sub-embedding sN (l)

i is composed of C: the contrary
sub-embeddings of i’s 1-hop positive neighbors, and D: the consistent sub-embeddings of i’s

1-hop negative neighbors. The final embedding of node i at the lth layer concatenates sP (l)i

and sN (l)
i (i.e., [sP (l)i , sN (l)

i]) together. Essentially, we use two aggregators to model different
path semantics brought by the signed edges, and the collaborative information is propagated
by recursively updating the consistent and contrary sub-embeddings in a finer-grained manner.
The computational rules for the lth layer item sub-embeddings can be derived by extending
Equation (3) in a similar way.

4.2 Prediction and Optimization

4.2.1 Neural Hyper-link Prediction. User preference usually exhibits complex and diverse prop-
erties in real-world scenarios. Unlike previous methods [15, 33, 48], which assume linear relation-
ship between the user, item, and feature, we do not impose any constraint on the entity interac-
tions. In our method, a deep architecture is leveraged to capture more flexible correlations in the
dataset, and the neural modeling is expected to lower the risk of model misspecification. Formally,
suppose the convolutional enhanced embeddings for useru, item i, and feature f are su , si , and sf ,
respectively, we predict the label of a hyper-edge by: ŷuif = ϕK (ϕK−1 (...ϕ1 ([su ; si ; sf]))), where
[·; ·; ·] concatenates the input vectors and {ϕ1,ϕ2, . . . ,ϕK } are non-linear layers with sigmoid as
the active function.

4.2.2 Optimization. We use binary cross-entropy to optimize model parameters, which has
been intensively adopted in the recommender system [9, 16]. Basically, it aims to maximize the
prediction of positive hyper-edges and simultaneously minimize the negative ones. The objective

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

8:10 X. Chen et al.

function is:

L1 =
∑

(u,i,f)∈O

(
yuif lnσ (ŷuif) + (1 − yuif) lnσ (1 − ŷuif)

)

=
∑

(u,i)∈T

��
�

∑
f ∈T +ui

lnσ (ŷuif) +
∑
f ∈T −ui

lnσ (1 − ŷuif)��
�
,

(6)

where O is the user-item-feature interaction set. yuif is the ground truth, which is 1 for positive
interactions (i.e., useru mentioned feature f with positive sentiment in her review on item i), and 0
for others.3 T is the observed user-item interaction set. T +ui and T −ui are the feature sets mentioned
in user u’s review on item i with positive and negative sentiments, respectively.

Recommender system essentially aims to compute the matching degree between a user and an
item, thus, we explicitly incorporate the direct user-item interaction loss into the final objective.
Specifically, the overall user/item representation is composed of two parts: Review-related em-

bedding: We leverage the above su and si to represent the user/item properties reflected in the
review information. Review-irrelevant embedding: User preferences and item properties can
be diverse and complex, and it is intuitive that many characters are not involved in the review in-
formation. Thus, we incorporate an auxiliary embedding4 to capture such information, which can
make the model more comprehensive and robust. The overall user/item representation concate-
nates the above two parts, i.e., s∗x = [sx ; sauxx] ∈ RD (x = u, i). At last, the matching score between
user u and item i is computed as: t̂ui = s∗u · s∗i , and the implicit interactions are modeled by maxi-
mizing:

L2 =
∑

(u,i, j)∈P
lnσ (t̂ui − t̂uj), (7)

where P = {(u, i, j) |(u, i) ∈ T , (u, j) � T } is the set of pair-wise training data, and j is randomly
sampled from u’s un-interacted items.

By combining the above components, the final objective function is:

L = (1 − α)L1 + αL2 − λLreg, (8)

where α balances the weights between different optimization parts. Lreg =
∑

θ ∈Θ ‖θ ‖22 is the reg-
ularization term with Θ as the parameter set. In this optimization target, L1 models the user-
item-feature triplet as whole, and the nodes’ compatibility is predicted without separating the
hyper-edge pair-wisely. L2 considers the direct user-item interactions. L1 and L2 share the same
parameters of su and si , which makes our model basically a multi-task learning framework.

5 FURTHER ANALYSIS

For better understanding our designed model, we present some analysis in the following:
Comparison with previous methods. Unlike existing feature-aware recommender mod-

els [15, 33, 48], where the user, item, and feature embeddings are produced directly from the ID
information, we leverage graph convolutional operation to enhance the embedding process. The
specifically designed aggregation paths can help to more sufficiently capture the collaborative
filtering signals. In addition, instead of imposing unpractical linear assumption on the entity rela-
tions, we use a neural network to more flexibly learn the correlations from the data, which greatly
improves the user profiling accuracy as well as the recommendation results.

3Note that the ground truth of a hyper-link with sign “−1” is regarded as 0.
4In the optimization process, the auxiliary embedding is randomly initialized and learned based on stochastic gradient

descent.

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

Neural Feature-aware Recommendation with Signed Hypergraph Convolutional Network 8:11

Time complexity analysis. Here, we present a complexity analysis on our model’s compu-
tational cost in the testing phase. As mentioned above, our model is composed of the embed-
ding and prediction components. In the embedding process, suppose the largest node degree
in our graph is M , then the complexity of aggregating neighbors on the lth layer mainly de-
pends on the matrix multiplications in Equations (4) and (5), which costs O (N ∗M ∗ dl ∗ dl−1),
where N is the number of the nodes. By convolving L layers, the total complexity of the embed-
ding process takes O (∑L

l=1 N ∗M ∗ dl ∗ dl−1). For the prediction part, let the kth user-item-feature

prediction layer ϕk project Rtk−1 to Rtk , then the total complexity for the triplet predictions is
O (|W| ∗∑K

l=1 tk ∗ tk−1), where |W| is the number of user-item-feature interactions. Since the
user-item prediction layer (i.e., Equation (7)) only depends on linear operations, the complexity is
simply O (|T | ∗ D) with |T | as the user-item interaction number. As a result, the total complexity
of our model is O (∑L

l=1 N ∗M ∗ dl ∗ dl−1 + |W| ∗
∑K
l=1 tk ∗ tk−1 + |T | ∗ D).

6 RELATEDWORK

Our study is a combination between review-based recommender system and GCN. We review the
relevant research areas in the following.

6.1 Review-based Recommendation

Leveraging side information to enhance the recommendation performance [7, 20, 34, 46, 47] and
explainability [21, 42, 44] has attracted increasing attention in the recent years. The user reviews,
as an important side information, have been widely studied. Early models [25, 29] mostly based
the review modeling on topic models [3], and the studies mainly concentrated on how to connect
the topic distributions with the user/item representations. With the ever prospering of the repre-
sentation learning technology, people have made several explorations [27, 30, 51] on processing
user reviews based on deep architectures. Comparing with topic models, deep learning methods
can more effectively represent the semantics of the user reviews [51]. For example, Reference [39]
leveraged attention mechanism to extract important features from the review information and
enhance the user, item representation by these features. Reference [22] designed two networks to
transfer the knowledge between user/item embeddings and the review information. Reference [19]
formulated review-based recommendation with capsule network and the recommendation results
can be explainable. Reference [6] profiled the users or the items by aggregating all the review in-
formation, where the model can not only predict the results but also can generate the most useful
reviews for the target users. Reference [10] extended Reference [6] by modeling users’ dynamic
preferences.
These methods mostly process the review information on the document-level. However, user

reviews are usually quite noisy, so indiscriminately integrating all the contents may be inappropri-
ate. In another research line, people leverage the review information by extracting user feature-
level preference, which utilizes user reviews in a more clear manner. In specific, Reference [15]
designed a TriRank method for modeling user-item-feature ternary relationships. Reference [48]
leveraged a co-matrix factorization model to capture pair-wise relations among the users, items,
and features. Reference [8] further extended Reference [48] by optimizing a feature-aware ranking
loss. Reference [33] utilized tensor factorization method to incorporate features into the user-item
interaction modeling. Different from these algorithms, our model formulates review-based rec-
ommendation with a hypergraph network, which enables us to enhance the embedding process
by the convolutional operation. In addition, our model no longer depends the relation modeling
on the linear assumption, and we leverage neural network to capture more complex interaction
patterns.

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

8:12 X. Chen et al.

6.2 Recommendation Based on Graph Neural Network

GNN has been successfully applied in many applications, such as social network [11, 12] and neu-
ral language processing [4]. To explore the effectiveness of GNN for recommender system, people
have built many promising models [2, 12, 35, 40, 41, 52]. References [2, 35] equipped user-item
bipartite graph with convolutional operation. To deploy graph neural network upon industry en-
vironment, Reference [45] designed an efficient graph network to propagate information along the
item-item relations. Different from other methods, where the edge sign information is ignored in
the modeling process, Reference [32] proposed a model to estimate signed links in heterogeneous
network. In this article, we apply GNN to the problem of feature-aware recommendation, and the
main focus of our model is on the signed ternary relations.

6.3 Hypergraph Neural Network

Hypergraph is a natural extension of traditional graph; it aims to model high-order correlations
among the data. Recent years have witnessed many efforts on building neural network on the
hypergraph structures. Reference [13] designs a convolutional operation on hyperedges to capture
the correlations during representation learning. Reference [43] degenerates the hyperedge into
many pairwise edges and treats the learning problem as a traditional graph optimization problem.
To capture different importances of the nodes, Reference [1] designs a hypergraph convolution
layer based on attention mechanism for aggregating. In our model, we apply hypergraph to the
field of feature-based recommender system, which is shown effective in capturing complex user-
item-feature interaction patterns.

7 EXPERIMENTS

In this section, we present our experiments, mainly focusing on three research questions:

• Q1: Can our model achieve better performance than the state-of-the-art methods?
• Q2: What are the effects of our designed convolutional operation?
• Q3: How do different parameters influence our model’s performance?

In the following, we begin by introducing the experimental setup and then answer these questions
by analyzing the experimental results.

7.1 Experimental Setup

7.1.1 Dataset. As mentioned above, we leverage two real-world datasets—Amazon5 and
Yelp6—for model evaluation. In specific, Amazon contains a large number of user review and
interaction records, and we select five categories, including Automotive, Instant Video, Baby, Dig-
ital Music, and Office for algorithm comparison. From the data statistics in Table 1, we can see the
selected datasets cover different characters, e.g., Automotive is a smaller and denser dataset, while
Baby is relatively larger, but much more sparse. Yelp is also a review-based dataset, but the review
contents are about restaurants instead of e-commerce products, which may exhibit different user
preference patterns. Since the original data are quite large, we filter it by remaining the users with
at least 20 item interactions.
Feature extraction. In our datasets, each piece of user review is transformed into many

“(U, I, F, S)” quadruplets, where U and I indicate the user and item related to the review, F rep-
resents some item feature (e.g., image quality and battery life in Figure 1), and S is the emotional
polarity from the user to the feature. Following previous studies [15, 33, 48], we extract the features

5http://jmcauley.ucsd.edu/data/amazon/.
6https://www.yelp.com/dataset/download.

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

http://jmcauley.ucsd.edu/data/amazon/
https://www.yelp.com/dataset/download

Neural Feature-aware Recommendation with Signed Hypergraph Convolutional Network 8:13

Table 1. Statistics of the Datasets Used in Our Experiments

Dataset #User #Item #Feature #Interaction Density
Automotive 1,863 1,340 54 3,520 0.141%
Video 4,099 1,449 142 10,891 0.183%
Office 4,784 2,390 463 34,619 0.302%
Digital 5,394 3,559 584 48,376 0.252%
Baby 19,067 7,008 567 91,184 0.068%
Yelp 10,044 19,091 596 478,146 0.249%

Table 2. Five Most Frequent Features in Each Dataset

Dataset Top Features (F)
Amazon-Auto car, quality, product, fit, price
Amazon-Video season, characters, series, acting, episode
Amazon-Office printer, quality, paper, product, colors
Amazon-Digital album, song, sound, track, music
Amazon-Baby baby, size, month, seat, product
Yelp food, service, staff, taste, chicken

(F) and their corresponding sentiments (S) based on an open-sourced toolkit called “Sentires”7 [49].
In general, this tool is a rule-based system. The features (F) for each product category are extracted
by analyzing the review grammar andmorphology, and the sentiment polarities (S) are determined
by an optimization framework. Since the feature and sentiment extraction is not the focus of this
article, we refer readers to References [15, 48] for more detailed illustration.

For an intuitive understanding of our data, we present the most frequently mentioned features
for each dataset in Table 2.We can see, whilemost of the extracted features aremeaningful, many of
them are just general words instead of item-specific attributes, such as, “food” for Yelp and “baby”
for Amazon-Baby. In addition, there are also many noisy features (e.g., “4 × 6” for Amazon-Office)
produced from this toolkit. Since these improper features may influence the downstream task (i.e.,
feature-aware recommendation), and it is not easy to filter them automatically, we remove them
in a crowdsourcing manner. In specific, three human annotators were asked to judge whether a
feature is proper for the corresponding dataset, and a feature is remained only when more than
two people make positive feedback.

7.1.2 Baselines. We select the following representative methods as our baselines:

• Most Popular (MP) [17]: This is a non-personalized method, and the recently most pop-
ular items are recommended to the users.

• BPR [26]: This is a well-known recommender method for modeling user implicit feedback;
we use matrix factorization as its predictive function.

• NCF [16]: This is a state-of-the-art deep recommender model, where the user and item
representations are fed into multiple non-linear layers to predict the final targets.

• NGCF [35]: This is a collaborative filtering method based on graph convolution network.
The collaborative information is propagated on the user-item bipartite graph.

• MCCF [37]: This is a recently proposed graph recommendation method based on attention
mechanism.

7http://yongfeng.me/code/.

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

http://yongfeng.me/code/

8:14 X. Chen et al.

• HFT [25]: This is a well-known review-based recommendation method, where the review
contents are modeled by a topic model.

• EFM [48]: This is a well-known feature-aware recommender model, where the user, item,
and feature relations are captured by linear co-matrix factorization technique.

• LRPPM [8]: This is a feature-aware recommender model based on ranking objective func-
tions; the user, item, and feature correlations are predicted by tensor factorization.

• DeepCoNN [51]: This is a review-based recommender model, and it is the first algorithm
that leverages deep learning method to capture user review semantics.
These baselines cover different model characters. BPR, NCF, NGCF, and MCCF are ID-

based recommender methods with either shallow or deep architectures. EFM, LRPPM, HFT,
and DeepCoNN are review-enhanced models, where HFT, DeepCoNN processes the review
information on the document-level, while EFM and LRPPM are designed based on user
feature-level preferences. Here, we do not use MTER [33] as a baseline, since it aims to
study the effectiveness of user opinion information that is unavailable in our model as well
as the other baselines, such as EFM and LRPPM. Because HFT, MCCF, and DeepCoNN are
designed for rating prediction, we revise their objective functions into BPR ranking loss [26]
to model user-implicit feedback.

7.1.3 Evaluation and Implementation Details. In our experiments, each user’s latest 30% inter-
actions are used for model testing, while the remaining are left for training (60% interactions)
and validation (10% interactions). The widely used metrics, including Hit Ratio (HR), F1 and Nor-
malized Discounted Cumulative Gain (NDCG) are utilized for performance evaluation. Among
these metrics, HR and F1 aim to measure how the recommended items overlap with users’ ac-
tually purchased ones, while NDCG is a ranking-based measurement, and higher-ranked ac-
curate items contribute more to the final results. In our experiment, we recommend 10 items
for each user, and the metrics are separately computed for each user. The final result is re-
ported by averaging all the testing users. When implementing our model, the trainable param-
eters are initialized according to a normal distribution and updated by stochastic gradient de-
scent (SGD) in the later optimization process. The hyper parameters are tuned based on the val-
idation set in a grid search manner. More specifically, the embedding dimension d0 is tuned in
the range of [10, 30, 50, 70, 90, 150, 200, 250]. The learning rate and the batch size are determined
in [0.001, 0.005, 0.01, 0.05, 0.1] and [8, 16, 32, 64], respectively. We search the weighting param-
eter α from [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1.0]. The auxiliary embedding size in
Equation (7) is tuned in [10, 30, 50, 70, 90], and the regularization coefficient λ is selected from
[0.00001, 0.0001, 0.001, 0.01].

7.2 Overall Comparison (Q1)

The results of comparing our model with the baselines can be seen in Table 3. We can see:
(i) While MP is a simple method, it sometimes performs well (e.g., on the datasets of Automotive
and Baby). This phenomenon is also observed in a recent study [17]. Among the other baselines,
NCF, NGCF, and MCCF achieve better performance than BPR in most cases. Basically, BPR cap-
tures user-item correlations based on the linear inner product. While NCF depends its prediction
on a more powerful neural network, and NGCF equips the embedding process with convolutional
operation to more sufficiently leverage CF signals [35]. As a result, both NCF and NGCF are ca-
pable of discovering more complex user behavior patterns and produce better recommendation
results. (ii) Among the review-enhanced models, EFM and LRPPM perform better than HFT. The
reasons can be that: HFT blindly leverages all the review information for user or item profiling.
Many irrelevant review contents are introduced into the learning process, which may overwhelm

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

Neural Feature-aware Recommendation with Signed Hypergraph Convolutional Network 8:15

Table 3. Performance Comparison between the Baselines and Our Model

Dataset @10 MP BPR NCF NGCF MCCF HFT EFM LRPPM DeepCoNN SHCN

F1 3.282 3.030 3.331 3.734 3.813 3.121 3.261 3.311 4.233∗ 4.996

Automotive HR 18.05 16.67 18.13 22.83 23.09 17.01 18.06 19.06 24.61∗ 27.77

NDCG 9.773 7.403 8.112 11.91 12.23 7.015 7.115 8.335 12.78∗ 12.65

F1 5.538 6.593 6.881 6.985 7.021 6.632 6.863 6.661 7.304∗ 7.449

Video HR 30.65 35.88 37.11 37.50 38.11 36.34 37.90 35.66 39.11∗ 40.32

NDCG 15.72 16.45 18.91 19.16 19.76 17.44 18.13 17.16 19.63∗ 21.62

F1 1.267 4.165 4.671 4.802 4.791 4.442 4.745 4.667 4.899∗ 5.755

Office HR 7.059 20.34 24.13 25.88∗ 25.02 21.70 23.06 23.18 25.32 31.17

NDCG 3.871 10.03 10.98 11.02 10.96 10.91 10.34 10.08 11.21∗ 15.30

F1 1.404 7.220 8.123 9.580∗ 9.167 7.011 7.281 8.218 8.485 10.05

Digital Music HR 8.000 37.14 40.93 49.71∗ 48.04 37.42 39.71 40.97 41.14 52.57

NDCG 3.311 17.68 23.18 25.75∗ 24.99 18.39 18.72 21.01 23.32 27.08

F1 5.415 4.949 4.771 4.804 4.984 5.413 5.633 5.513 5.946∗ 6.683

Baby HR 29.62 28.27 25.17 26.24 27.32 28.24 30.74 29.04 32.33∗ 36.45

NDCG 13.22 11.95 11.09 12.83 13.03 13.10 14.33 13.11 17.33∗ 19.10

F1 4.655 11.98 14.21 15.02 14.91 13.16 14.16 14.26 16.11∗ 17.09

Yelp HR 26.61 66.42 69.01 71.72∗ 70.01 65.12 27.12 68.23 69.12 72.62

NDCG 7.454 26.00 28.91 30.33 29.10 27.12 28.88 29.98 31.22∗ 34.40

All the numbers are percentage value with “%” omitted. For each metric on different datasets, we use bolded fonts and ∗

to label the best performance and the best baseline performance, respectively.

useful information and limit the recommendation performance. In contrast, EFM and LRPPM only
remain user feature-level preferences, which profile users and items in a more clean and structured
manner. Interestingly, DeepCoNN obtains better performance than EFM and LRPPM, we specu-
late that the powerful deep architecture can compensate the weakness brought by the noisy review
information, which manifests that non-linear architecture is quite important for user review mod-
eling. (iii) Encouragingly, our model achieves the best performance in most cases. This observation
positively answers the first research question (Q1) and verifies the effectiveness of our designed
architecture. Since the review information can more comprehensively profile the users and items,
SHCN achieves better performance than review-free models, such as NCF and NGCF. Comparing
with previous review-basedmethods (e.g., EFM, LRPPM), SHCN can enhance the user/item/feature
embeddings with their neighbor information, which finally leads to improved results.

7.3 Study on the Convolutional Operation (Q2)

In this section, we investigate the effects of the convolutional layers. The parameters are tuned in
the ranges as mentioned above. We present the performances of HR and NDCG on the Amazon
datasets, and the results on F1 and Yelp are similar and omitted.

7.3.1 Effects of the Number of Convolutional Layers. The number of convolutional layers de-
termines how many hops the information can be propagated in the graph. We run our model by
setting the layer number L as {0, 1, 2, 3, 4}, respectively.8 The results are shown in Table 4. We can
see: convolutional operation is indeed useful for our task, since SHCN-0 (L = 0) exhibits the worst
performance across all the datasets. The best performance is achieved when L = 2 or L = 3, too
small or large layer number leads to inferior results. We speculate that increasing L can enhance

8L = 0 indicates no convolutional layers.

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

8:16 X. Chen et al.

Table 4. Effects of the Number of Convolutional Layers

Dataset Automotive Video Office Digital Music Baby
@10(%) HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG
SHCN-0 13.70 6.54 16.67 7.22 20.59 9.76 50.86 26.37 7.31 3.13
SHCN-1 23.61 11.71 36.29 19.03 25.29 10.08 51.42 26.74 26.71 12.02
SHCN-2 27.77 12.65 40.32 21.62 31.17 15.30 52.57 27.08 36.45 19.10
SHCN-3 25.00 11.57 40.29 20.37 21.76 9.06 52.00 26.89 37.01 19.42

SHCN-4 23.61 11.09 40.30 21.08 26.47 12.49 50.28 26.37 35.99 18.88

Fig. 4. Comparison between different propagation paths.

the utilization of CF signals, while with the aggregation path becoming longer, there are also more
opportunities to introduce noises into the modeling process [35, 36].

7.3.2 Effects of Different Propagation Paths. There are both user-item and item-feature convo-
lutional paths in our model; we respectively investigate their effects for the performance in this
section. In the experiments, we conduct convolutional operation along only one type of these
propagation paths (we name them as SHCN-UI and SHCN-IF, respectively), and their comparison
with our final model can be seen in Figure 4. We can see, SHCN-UI performs better than SHCN-IF
across different datasets in most cases. We speculate that Top-N recommendation is more relevant
with the user-item interactions, thus the convolutional operation between the users and items
may play a more significant role on the final evaluation metrics. While only using item-feature
convolutional path does not perform well, it is also valuable in the modeling process, which can
be seen from the superior performance of our final model SHCN. This observation manifests that
different propagation paths may have their own contributions to the final results; our model can
effectively combine them for further improving the performance.

7.3.3 Effects of the Dual-embedding Mechanism. In this experiment, we would like to study
whether the dual-embedding mechanism can bring us with superior performance. We compare
our model with its two variations. The first method directly drops the negative edges, and the
information is only propagated along the positive ones (named as SHCN-P). For the second model,
we do not distinguish positive and negative edges, and the convolutional operation is conducted
based on a unified embedding mechanism (named as SHCN-U). The results of comparing these
methods are shown in Figure 5. We can see: The performance ranking between SHCN-P and
SHCN-U interchanges across different datasets (i.e., SHCN-P is better for Video and Baby, and
SHCN-U wins on Automotive, Office, and Digital Music), while our model can consistently
outperform both of them, which verifies the effectiveness of our designed dual-embedding
scheme. We argue that, in real-world scenarios, negative sentiments are useful in revealing user
preference, blindly dropping them, like SHCN-P, may lose some valuable information and limit

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

Neural Feature-aware Recommendation with Signed Hypergraph Convolutional Network 8:17

Fig. 5. Effectiveness of the dual-embedding mechanism.

Table 5. Effects of Different Hyper-edge Corruption Methods

Dataset Automotive Video Office Digital Music Baby
@10(%) HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG
SHCN-A 25.00 12.83 38.71 21.34 22.94 11.27 51.42 26.14 33.74 18.40
SHCN-B 20.83 10.11 38.30 19.92 16.47 8.16 49.14 26.55 30.92 15.97
SHCN-C 26.39 11.33 39.51 20.13 22.35 10.91 50.86 26.74 33.08 17.41
SHCN 27.77 12.65 40.32 21.62 31.17 15.30 52.57 27.08 36.45 19.10

the recommendation performance. Even if we had incorporated all the sentimental information,
positive and negative edges still vastly differ in semantics, and it is unreasonable to ignore their
discriminations, which is verified by the inferior performance of SHCN-U. Our proposed sub-
embeddings can encode different sentiments separately, and the carefully designed aggregation
strategy directly handles the signed edges without relaxing the problem like SHCN-U, which
utilizes user sentimental preferences in a more effective manner.

7.3.4 Effects of Different Hyper-edge Corruption Methods. Careful readers may also be inter-
ested in whether our hyper-edge extending method is reasonable. To answer this question, we
compare our model with three other types of corruption strategies. Obviously, each user-item-
feature hyper-edge can be potentially extended into three ordinary edges, which connect the user-
item, item-feature, and user-feature, respectively. In our experiment, the first comparing method
makes connections between the user-item and user-feature (SHCN-A), the second one builds edges
for the user-feature and item-feature (SHCN-B), and the last one connects each pair of the user,
item and feature (SHCN-C). Similar to SHCN, information in the baselines can only be propagated
along the same type of relations. The comparison results are shown in Table 5. We can see, in most
cases, our model can outperform the other variations, which verifies the superiority of our hyper-
edge corruptionmethod. One interesting observation is that SHCN-C does not perform better than
our model. Since SHCN-C only adds user-feature connections based on SHCN, it suggests that the
direct modeling between the users and features maybe not be important for our data, which is
consistent with our intuitions in Section 4.1.1 and agrees with the results observed in the previous
study [15].

7.4 Parameter Analysis (Q3)

In this section, we analyze how different parameters influence our model’s performance. We begin
by studying the impact of the embedding dimension d0, and then the weighting parameter α is
investigated to show its effects. In the experiments, d0 and α are tuned in the ranges as mentioned

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

8:18 X. Chen et al.

Fig. 6. Parameter analysis. The first line shows the effects of different embedding size d0. We also present
the performance of our model without using the auxiliary embedding by fixing d0 as the optimal value. The
second line shows the impact of the weighting parameter α .

above, and the other parameters are fixed as default values. The results are reported based on the
same datasets as Section 7.3.

7.4.1 Influence of the Embedding Dimension d0. Embedding size is important for the represen-
tation learning framework, since it directly determines the model expressiveness. The impact of
this parameter for our model is shown in the first line of Figure 6. We can see: In most cases, our
model can almost reach the best performance when d0 is moderate or even very small. This obser-
vation is interesting: It manifests that a more powerful model does not necessarily lead to better
results. We speculate that, in the field of feature-aware recommendation, user preference data are
usually very sparse, and little parameters are enough for fitting the training set; the redundant
dimensions make the model more flexible and hard to learn, which limits the model generaliza-
tion capability on the testing set. In addition, when d0 is optimal, abandoning auxiliary embedding
leads to inferior performance (labeled by dotted lines), which manifests that explicitly modeling
the review-irrelevant information is helpful in our model.

7.4.2 Influence of the Weighting Parameter α . Our objective function (i.e., Equation (8)) is com-
posed of two major components (i.e., L1 and L2), and the weighting parameter α determines how
to balance them in the learning process. To study the influence of α , we examine the model per-
formance by tuning α in the range of [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1.0]. From the
result in Figure 6, we can see: The optimal α varies across different datasets. For Automotive and
Baby, small α leads to better performance, while on the datasets of Video, Office, and Digital, larger
α can be more appropriate. By setting α = 0.0 or α = 1.0, we actually only optimizeL1 orL2 in the
training process. We can see neither of them can achieve the best performance, which manifests
that both optimization goals are useful for the final results. Essentially, our objective function is a
multi-task learning framework, and the shared parameters are forced to learn from both user item-
level (L2) and feature-level (L1) preferences. The user-item modeling is more general and direct
to the final task. The feature interactions can reveal more detail and comprehensive user person-
alities (i.e., different users may have individual feature preferences even for the same item). By
taking the best of both worlds, our model finally obtains superior recommendation performance.

7.5 Visualization

In this section, we provide some intuitive understandings for our designed convolutional opera-
tion. We based our experiment on the Baby dataset, and the comparison was conducted between

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

Neural Feature-aware Recommendation with Signed Hypergraph Convolutional Network 8:19

Fig. 7. Visualizing the effect of the convolutional operation. The left figure is our model without any con-
volutional operation, and the right one is enhanced by two convolutional layers. Each triangle represents a
user, and the dotted lines link the users to their interacted items, which are labeled by circles.

our model without any convolutional operation (i.e., SHCN-0) and the one with two convolutional
layers9 (i.e., SHCN-2). We projected the learned embeddings into a 2D space based on t-SNE [24],
and four users as well as their interactions in the testing set are presented for analysis. The results
are shown in Figure 7, we can see, comparing with SHCN-0, the user embeddings learned from
SHCN-2 are more closer to their purchased items’ embeddings, which means the convolutional
enhanced embeddings can more accurately reflect unseen user-item connectivities. This observa-
tion is consistent with Table 4, which, from the qualitative perspective, explains the superiority
of the convolutional operation. By explicitly propagating collaborative information on the user-
item-feature graph, the users and their correspondingly interacted items seem more likely to form
clusters (e.g., users 10,744, 18,171 and 3,364) in most cases.

8 CONCLUSION AND FUTURE WORK

Recommendation based on user review information has attracted increasing attention in the re-
cent research communities. This article proposes to reformulate feature-aware recommendation
with a signed hypergraph convolutional network. We develop a novel convolution operation for
signed hyper-edges based on the basic characters of feature-aware recommendation and leverage
neural models to capture the correlations among the users, items, and features. By the designed
model, we can more sufficiently leverage the collaborative filtering information and discover more
complex user-item-feature relations, which enable us to significantly improve the recommenda-
tion performance. We conduct extensive experiments based on real-world datasets to demonstrate
the superiorities of our proposed model.
For the field of graph convolutional network, this article proposes the first solution to deploy

convolutional operation on signed hypergraphs. In the future, we plan to extend this method with
attention mechanism to discriminate different node importances and apply our model to other
domains, such as social network and neural language processing.
From the perspective of personalized recommendation, our proposedmethod provides a promis-

ing avenue for formulating and modeling user feature-level sentiments via using the signed hy-
pergraph. Actually, there is much room for improvement. For example, we can build personalized
information aggregation paths to capture user diverse personalities. And also, we can design more
advanced methods for corrupting hyper-edges, or even consider each hyper-edge as a whole for
information propagation.

9SHCN-2 is selected because it can achieve the best performance according to Table 4.

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

8:20 X. Chen et al.

ACKNOWLEDGMENTS

We gratefully appreciate the anonymous reviewers for their valuable and detailed comments that
greatly helped to improve the quality of this article. Special thanks go to Associate Editor Hui Fang
for her hard work in reviewing and providing important feedback.

REFERENCES

[1] Song Bai, Feihu Zhang, and Philip H. S. Torr. 2019. Hypergraph convolution and hypergraph attention. arXiv preprint

arXiv:1901.08150 (2019).

[2] Rianne van den Berg, Thomas N. Kipf, and MaxWelling. 2017. Graph convolutional matrix completion. arXiv preprint

arXiv:1706.02263 (2017).

[3] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet allocation. J. Mach. Learn. Res. 3, Jan.

(2003), 993–1022.

[4] Yixin Cao, Zhiyuan Liu, Chengjiang Li, Juanzi Li, and Tat-Seng Chua. 2019. Multi-channel graph neural network for

entity alignment. In Proceedings of the Meeting of the Association for Computational Linguistics. 1452–1461.

[5] Rose Catherine andWilliam Cohen. 2017. Transnets: Learning to transform for recommendation. In RecSys. 288–296.

[6] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. 2018. Neural attentional rating regression with review-level

explanations. In Proceedings of the World Wide Web Conference. 1583–1592.

[7] Xu Chen, Hanxiong Chen, Hongteng Xu, Yongfeng Zhang, Yixin Cao, Zheng Qin, and Hongyuan Zha. 2019. Person-

alized fashion recommendation with visual explanations based on multimodal attention network: Towards visually

explainable recommendation. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval (SIGIR’19). 765–774.

[8] Xu Chen, ZhengQin, Yongfeng Zhang, and Tao Xu. 2016. Learning to rank features for recommendation overmultiple

categories. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information

Retrieval. 305–314.

[9] Xu Chen, Yongfeng Zhang, Qingyao Ai, Hongteng Xu, Junchi Yan, and Zheng Qin. 2017. Personalized key frame

recommendation. In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval.

315–324.

[10] Xu Chen, Yongfeng Zhang, and Zheng Qin. 2019. Dynamic explainable recommendation based on neural attentive

models. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 53–60.

[11] Tyler Derr, Yao Ma, and Jiliang Tang. 2018. Signed graph convolutional networks. In Proceedings of the IEEE Interna-

tional Conference on Data Mining.

[12] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. 2019. Graph neural networks for social

recommendation. In Proceedings of the World Wide Web Conference. ACM, 417–426.

[13] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and YueGao. 2019. Hypergraph neural networks. In Proceedings

of the AAAI Conference on Artificial Intelligence, Vol. 33. 3558–3565.

[14] Junyu Gao, Tianzhu Zhang, and Changsheng Xu. 2017. A unified personalized video recommendation via dynamic

recurrent neural networks. In Proceedings of the 25th ACM International Conference on Multimedia. 127–135.

[15] Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. 2015. TriRank: Review-aware explainable recommendation

by modeling aspects. In Proceedings of the 24th ACM International on Conference on Information and Knowledge Man-

agement. 1661–1670.

[16] XiangnanHe, Lizi Liao, Hanwang Zhang, LiqiangNie, XiaHu, and Tat-SengChua. 2017. Neural collaborative filtering.

In Proceedings of the World Wide Web Conference. 173–182.

[17] Yitong Ji, Aixin Sun, Jie Zhang, and Chenliang Li. 2020. A re-visit of the popularity baseline in recommender systems.

In Proceedings of the ACM SIGIR Conference on Research and Development in Information Retrieval.

[18] Thomas N. Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv

preprint arXiv:1609.02907 (2016).

[19] Chenliang Li, Cong Quan, Li Peng, Yunwei Qi, Yuming Deng, and Libing Wu. 2019. A capsule network for recom-

mendation and explaining what you like and dislike. In Proceedings of the ACM SIGIR Conference on Research and

Development in Information Retrieval. 275–284.

[20] Lei Li, Li Chen, and Yongfeng Zhang. 2020. Towards controllable explanation generation for recommender systems

via neural template. In Companion Proceedings of the Web Conference 2020. ACM/IW3C2, 198–202.

[21] Lei Li, Yongfeng Zhang, and Li Chen. 2020. Generate neural template explanations for recommendation. In Proceedings

of the 29th ACM International Conference on Information and Knowledge Management.

[22] Donghua Liu, Jing Li, Bo Du, Jun Chang, and Rong Gao. 2019. DAML: Dual attention mutual learning between ratings

and reviews for item recommendation. In Proceedings of the ACM SIGIR Conference on Research and Development in

Information Retrieval. 344–352.

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

Neural Feature-aware Recommendation with Signed Hypergraph Convolutional Network 8:21

[23] Yang Liu, Xiangji Huang, Aijun An, and Xiaohui Yu. 2008. Modeling and predicting the helpfulness of online reviews.

In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM’08). IEEE Computer Society, 443–452.

DOI:https://doi.org/10.1109/ICDM.2008.94

[24] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, Nov. (2008),

2579–2605.

[25] Julian McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics: Understanding rating dimensions with

review text. In Proceedings of the 7th ACM Conference on Recommender Systems. 165–172.

[26] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian person-

alized ranking from implicit feedback. In Proceedings of the Conference on Uncertainty in Artificial Intelligence.

452–461.

[27] Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. 2017. Interpretable convolutional neural networks with dual local

and global attention for review rating prediction. In Proceedings of the 11th ACM Conference on Recommender Systems.

297–305.

[28] Omer Tal, Yang Liu, Jimmy Huang, Xiaohui Yu, and Bushra Aljbawi. 2019. Neural attention frameworks for explain-

able recommendation. IEEE Trans. Knowl. Data Eng. (2019).

[29] Yunzhi Tan, Min Zhang, Yiqun Liu, and Shaoping Ma. 2016. Rating-boosted latent topics: Understanding users and

items with ratings and reviews. In Proceedings of the International Joint Conference on Artificial Intelligence, Vol. 16.

2640–2646.

[30] Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2018. Multi-pointer co-attention networks for recommenda-

tion. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

2309–2318.

[31] Ke Tu, Peng Cui, Xiao Wang, Fei Wang, and Wenwu Zhu. 2018. Structural deep embedding for hyper-networks. In

Proceedings of the AAAI Conference on Artificial Intelligence.

[32] Hongwei Wang, Fuzheng Zhang, Min Hou, Xing Xie, Minyi Guo, and Qi Liu. 2018. Shine: Signed heterogeneous

information network embedding for sentiment link prediction. In Proceedings of the International Conference on Web

Search and Data Mining. 592–600.

[33] Nan Wang, Hongning Wang, Yiling Jia, and Yue Yin. 2018. Explainable recommendation via multi-task learning in

opinionated text data. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in

Information Retrieval. 165–174.

[34] Pengfei Wang, Yu Fan, Long Xia, Wayne Xin Zhao, Shaozhang Niu, and Jimmy Huang. 2020. KERL: A knowledge-

guided reinforcement learning model for sequential recommendation. In Proceedings of the 43rd International ACM

SIGIR Conference on Research and Development in Information Retrieval. 209–218.

[35] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural graph collaborative filtering.

In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.

165–174.

[36] Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng Chua. 2019. Explainable reasoning

over knowledge graphs for recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.

5329–5336.

[37] Xiao Wang, Ruijia Wang, Chuan Shi, Guojie Song, and Qingyong Li. 2019. Multi-component graph convolutional

collaborative filtering. arXiv preprint arXiv:1911.10699 (2019).

[38] Xiaolong Wang, Yufei Ye, and Abhinav Gupta. 2018. Zero-shot recognition via semantic embeddings and knowledge

graphs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 6857–6866.

[39] Libing Wu, Cong Quan, Chenliang Li, Qian Wang, Bolong Zheng, and Xiangyang Luo. 2019. A context-aware user-

item representation learning for item recommendation. ACM Trans. Inf. Syst. 37, 2 (2019), 1–29.

[40] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019. A neural influence diffusion model

for social recommendation. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval. 235–244.

[41] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019. Session-based recommendation

with graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 346–353.

[42] Yikun Xian, Zuohui Fu, S. Muthukrishnan, Gerard De Melo, and Yongfeng Zhang. 2019. Reinforcement knowledge

graph reasoning for explainable recommendation. In Proceedings of the 42nd International ACM SIGIR Conference on

Research and Development in Information Retrieval. 285–294.

[43] Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Anand Louis, and Partha Talukdar. 2018. HyperGCN: Hyper-

graph convolutional networks for semi-supervised classification. arXiv preprint arXiv:1809.02589 (2018).

[44] Handong Zhao, Yingqiang Ge, Xu Chen, Qiaoying Huang, Shijie Geng, Zhou Qin, Gerard de Melo, S. Muthukrishnan,

Yongfeng Zhang, Yikun Xian, and Zuohui Fu. 2020. CAFE: Coarse-to-fine neural symbolic reasoning for explainable

recommendation. In Proceedings of the 29th ACM International Conference on Information and KnowledgeManagement.

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

https://doi.org/10.1109/ICDM.2008.94

8:22 X. Chen et al.

[45] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec. 2018. Graph

convolutional neural networks for web-scale recommender systems. In Proceedings of the International ACM SIGIR

Conference on Research and Development in Information Retrieval. ACM, 974–983.

[46] Yongfeng Zhang. 2015. Incorporating phrase-level sentiment analysis on textual reviews for personalized recommen-

dation. In Proceedings of the 8th ACM International Conference on Web Search and Data Mining. 435–440.

[47] Yongfeng Zhang, Qingyao Ai, Xu Chen, andW. Bruce Croft. 2017. Joint representation learning for Top-N recommen-

dation with heterogeneous information sources. In Proceedings of the ACM Conference on Information and Knowledge

Management. 1449–1458.

[48] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping Ma. 2014. Explicit factor models for

explainable recommendation based on phrase-level sentiment analysis. In Proceedings of the 37th International ACM

SIGIR Conference on Research & Development in Information Retrieval. 83–92.

[49] Yongfeng Zhang, Haochen Zhang, Min Zhang, Yiqun Liu, and Shaoping Ma. 2014. Do users rate or review? Boost

phrase-level sentiment labeling with review-level sentiment classification. In Proceedings of the 37th International

ACM SIGIR Conference on Research & Development in Information Retrieval. 1027–1030.

[50] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan, Xing Xie, and Zhenhui Li. 2018.

DRN: A deep reinforcement learning framework for news recommendation. In Proceedings of the World Wide Web

Conference. 167–176.

[51] Lei Zheng, Vahid Noroozi, and Philip S. Yu. 2017. Joint deep modeling of users and items using reviews for recom-

mendation. In Proceedings of the 10th ACM International Conference on Web Search and Data Mining. 425–434.

[52] Yu Zhu, ZiyuGuan, Shulong Tan, Haifeng Liu, DengCai, andXiaofei He. 2016. Heterogeneous hypergraph embedding

for document recommendation. Neurocomputing 216 (2016), 150–162.

Received January 2020; revised August 2020; accepted September 2020

ACM Transactions on Information Systems, Vol. 39, No. 1, Article 8. Publication date: November 2020.

