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Outline of the Tutorial

« Why Explainable Recommendation and Search

« A Unified View of Search, Recommendation, and Explainability
« Part 1: Explainable Recommendation

« Part 2: Explainable Search

* Summary
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Why Explainable Recommendation and Search
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Explainable Al on the Web

 Recent research on explainable recommendation and search
IS related to Explainable Al

. Search Engine
Computer Vision

Recommender Systems

Chatbots

Autonomous Driving

Robotics Explainable RS
Explainable Al | Explainable Search, Al on the Web

Explainable QA

Web and IR Digital Financing
NLP ......

Machine Learning Sharing Economy
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The "Black-Box™ Learning Problem

« State-of-the-art Web intelligent systems rely on advanced
machine learning (deep learning) models

Ioput Blackbox Sutput >|
-l‘”i“  NPIL O I Stimulus Response

« We don'’t always understand what happens in the box.
— Difficult to provide explanations for the machine outputs
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Sometimes Explanations are Important

For Users For System Designers
Why did you show this result to me? Why does my system give this output?
*A recommended item
*A search result How to conduct system diagnostics?

*Especially when result is personalized

Which component of system is wrong?
Why should | trust the result?

How to tune the system performance?
How should | take actions?

How to increase system robustness?
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Broader Impacts of Explanations

« Fairness Perspectives of Al Systems
— Asymmetric information creates unfairness
— Users deserve reliable explanations of Al decisions to take fair actions

« Social Justice Perspectives
— Sometimes absolutely fair solutions do not exist
— At least explain to users what happens in the systems

 New Human-Computer Interaction Paradigms
— Give machine an opportunity to explain itself

— May change human behaviors in CHI, e.g., in conversational Al
— Feed back from machine, more efficient human-machine interaction
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Al Policy Perspectives
 EU General Data Protection Regulation (GDPR)

— Atrticle 5.2: a data controller “must be able to demonstrate that personal data
are processed in a transparent manner in relation to the data subject”

— Article 12 provides general rules on transparency, which apply to the
provision of information (Articles 13-14), communications with data subjects
concerning their rights (Articles 15-22), and in relation to data breaches
(Article 34).

« Implications of the regulation is still to be clarified in legal practice
« Should we have Al Regulations? — A debatable problem

* Not the key focus of today’s tutorial.
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Technical Perspectives

« Is it possible to develop explainable Al systems?

* |s it possible to provide accountable explanations to users
(i.e., data subjects, as required in GDPR)?

« What are the technical responses to such regulations?

%
[

Recommendation Search

Systems

Go

Widely deployed Al systems on the Web, influence nearly every Web user’s daily life.
They are very good platforms to develop, verify and test explainable Al algorithms.

Explainable Recommendation and Search. 9
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A Unified View of Search, Recommendation,
and Explainability
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An Overview of Search Systems

* From query to documents and explanations

— User information need is explicitly represented by the search query
« Search keywords, questions, etc.

Query — O
Search  |____IInformation

Search | Engine Storage
Results —

Web pages, images,
videos, User Generated
Contents (UGC), etc.

Web pages,
answers, etc.

11
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An Overview of Search Systems

* From query to documents and explanations

— User information need is explicitly represented by the search query
« Search keywords, questions, etc.

Query — O
Search  |____IInformation
Search | Engine Storage

Results ~—

When the search algorithm is explainable

Explanations «--!

{\.

search engine

e.g., search snippets , o
Web search engine - Wikipedia

https://en.wikipedia.org/wiki/Web_search_engine ¥

A web search engine or Internet search engine is a software system that is designed to carry out web

search (Internet search), which means to search the World
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Search Systems

* From query to documents and explanations

— User information need is explicitly represented by the search query
« Search keywords, questions, etc.

Query > —
Search  |_ | information
Search Engine Storage
Results | ~—
| o
Explanations ¢- <ol : Explanation ,
"\ Engine |

When the search algorithm is not quite explainable..

13
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An Overview of Recommendation Systems

 From user to items and explanations

— User information need is implicitly represented by the user profile
« User content information, interaction history, etc.

User —— .
Recommendation m

Recommended Engine ltems
ltems ~—

Products, movies, music,
videos, news, friends,
twits, actions, etc.

14
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An Overview of Recommendation Systems

 From user to items and explanations

— User information need is implicitly represented by the user profile
« User content information, interaction history, etc.

User —— .
Recommendation m

Recommended Engine ltems
ltems ~—

I
I
I
: When the recommendation algorithm is explainable
]

Explanatlons = e.g., Most popular recommendation

Other explainable recommendation algorithms
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An Overview of Recommendation Systems

 From user to items and explanations

— User information need is implicitly represented by the user profile
« User content information, interaction history, etc.

User P—— Q
Recommendation Candidate
Recommended Engine ltems
ltems ! —
|
I e
Explanations +-1 _ _ ' Explanation |
. Engine |

When the recommendation algorithm is not quite explainable..
Usually generate post-hoc explanations 16
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Unified View of Search and Recommendation

« [Belkin and Croft, 1992] [Garcia-Molina et. al., 2011]

Search Recommendations
Delivery Mode Pull Push or Pull
Beneficiary User User and provider
Unexpected good? No Yes
Collective knowledge Maybe Maybe
Query available Yes Maybe
Context dependent Maybe Maybe

Courtesy Table from [2]

17
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Jnified View of Search and Recommendation

Query

User History

User Location

\User and context information

Search Results

Recommendations

Explanations

¥

e

=

-

=

Explainable Search/Recommendation Algorithm ]

*

User Information

Content: documents, products, news, etc.

Information

Figure adapted from [2]

18
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Jnified View of Search and Recommendation

Query

User History

User Location

\User and context information

Search Results

Recommendations

Explanations

¥

e

f

-

*

‘ Search/Recommendation Algorithm

*

User Information

Content: documents, products, news, etc.

Information

Figure adapted from [2]

19
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About this tutorial
User/Query —*  Explainable
Search and
Recommendation
Results [«— Algorithms
User/Query —— Non-Explainable
Search and
Recommendation
Results [¢«— Algorithms
_________
' (Post-hoc) Explanation |
: Algorithms :

20
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Outline of the Tutorial

« Why Explainable Recommendation and Search
« A Unified View of Search, Recommendation, and Explainability

« Part 1: Explainable Recommendation
— History Overview

— Explainable Recommendation Methods
— Challenges and Open Directions

« Part 2: Explainable Search

« Summary

21
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Recommendation Systems — The 5W

 Recommendation system research can be broadly classified into
the SW.

What to recommend: the fundamental problem of all recommendation
systems.

When to recommend: the research task of Time-aware recommendation
Where to recommend: the research task of Location-based recommendation
Who to recommend: the research task of Social recommendation

Why to recommend: the research task of Explainable Recommendation

24
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A Brief Historical Overview — How the Problem Origins

« Early approaches to recommendation were highly explainable

— Content-based Recommendation [Balabanovi¢ et al. CACM’1997, Pazzani et
al. AdapWeb’2007]

— User-based Collaborative Filtering [Resnick et al. CSCW’1994]
— ltem-based Collaborative Filtering [Sarwar et al. WWW’2001]

[ Item Attributes ]1

r ____________________________
| Title Genre Author Type Price Keywords I
I I N S S G G G G S G G G G G G S S S S S S S S S S S - - J
The Night Memoir David Carr  Paperback  29.90 Press and journalism,
of the Gun drug addiction,
personal memoirs,
New York
The Lace Fiction, Brunonia Hardcover 49.90 American
Reader Mystery Barry contemporary fiction,
detective, historical
Into the Romance, Suzanne Hardcover 45.90 American fiction,
Fire Suspense Brockmann murder, neo-Nazism

25
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Content-based Recommendation and Explanation

» User profile

 ltemattributes e e - ——-—- \

Title Genre Author Type Price Keywords |

The Night of Memoir David Carr Paperback  29.90 | Press and journalism, drug ||

the Gun I addiction, personal I

| memoirs, New York ,

The Lace Fiction, Brunonia Hardcover 49.90 . American contemporary I

Reader Mystery Barry I fiction, detective, historical |

Into the Fire Romance, Suzanne Hardcover 45.90 | American fiction, murder, I
Suspense  Brockmann I neo-Nazism

| |

|

|

|

|

Keywords
Fiction Brunonia, Paperback 25.65 I Detective, murder,
Barry, Ken New York
Follett I
) \ /J
Simple approach = E====ms=s=s==

Compute the similarity of an unseen item |keywords(b;) N keywords(b;)|
with the user profile based on the keyword |:> [keywords(b,) U keywords(b,)]
overlap (e.g. using Jaccard similarity)

Explanation can be naturally provided based on content information 26
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User-based Collaborative Filtering and Explanation
» A matrix of ratings of the current user, Alice, and some other users is given

-mmmm

Alice 3 4 4

Userl 3 1 2 3 3
User2 4 3 4 3 5
User3 3 3 1 5 4
Userd 5 3 3 4 4

« Consider each row as a user vector

» Find top-K similar users (i.e., k-nearest neighbor) based on similarity measure

— E.g., Adjusted Cosine Similarity

Tap —Ta)(Tpy, —T
sim(a, b) _ Zp EP( P )( bp b)

— \2 — \2
Zp EP(ra,p - ra) \/Zp eP(rb,p - rb)
« Average similar users’ rating on the target item as prediction, recommend if a high rating

Explanation: Users who have similar ratings with you highly rated this item
27
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Item-based Collaborative Filtering and Explanation
» A matrix of ratings of the current user, Alice, and some other users is given

-mmmm

Alice 5 3 4 4

Userl 3 1 2 3 3
User2 4 3 4 3 5
User3 3 3 1 5 4
User4 5 3 3 4 4

« Consider each column as an item vector
* Find top-K similar items (i.e., k-nearest item) based on similarity measure
— E.g., Adjusted Cosine Similarity

Sl'm(a, E’) — ZueU(ru,a - ﬁ) (ru,b - ﬁ)

—\2 —N\2
Zueu(ru,a - ru) ZueU(ru,b - ru)
« Average similar items’ rating on the target user as prediction, recommend if a high rating

Explanation: You have highly rated items that are similar to this item

28
The commonly seen “based on your view history” explanation in movie review and EC
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Validate Explanations based on User Surveys

« Explaining Collaborative Filtering Recommendations
— [Herlocker et al. CSCW’2000]

Your Neighbors' Ratings for this /) X]*$5@ (2000) /= Ratings for Sixth Sense, The (1999) by your
Movie Personalized Prediction : kxkx twll enjoy it Neighbors
25 23
“3 20 - Rating Your Neighhors' Ratings
5 Your Neighbors' Ratings for this Movie Must See
3 15 -
7 N g | N
E 3 . . . It's OK | |
= '
o [ ] * K Fairly
1's and 2's 3's 4's and 5's * X X i::ul
Rating Kk Xk |
- A KKK K Strong Weak
Prediction for Sixth Sense, The (1999) Neighbors Neighbars
Prediction Confidence (vry sinilr)
o ok ok ok K o kK 3 Chick on a bar to see that neighbor's profile!

21 different explanation interfaces, 78 users on MovieLens website, each user was provided
with 21 recommendations, each with a different explanation.

Ask users to rate on a scale of 1-7 how likely they would go and see the movie. 29
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# Mean o . pev Your Neighbors' Ratings for this
Response .
. Movie
1 Histogram with grouping 76 5.25 1.29
2 Past performance 77 5.19 1.16 o5 03
3 Neighbor ratings histogram 78 5.09 1.22 "
4 Table of neighbors ratings 78 4.97 1.29 _§ 20
5 Similarity to other moviesrated 77 4.97 1.50 S
6 Favorite actor or actress 76 4.92 1.73 2 15
v M.ov‘i?lfcns percent confidence in 77 4.71 1.02 '§ 10 5
prediction 2
8 Won awards 76 4.67 1.49 g 5 3
9 Detailed process description 77 4.64 1.40 z l_I
10 # neighbors 75 4 60 1.29 0
11 No extra data — focus on system | 75 453 1.20 T'sand 2's 3's 4'sand 5's
12 No extra data — focus on users 78 4.51 1.35 Rating
3 M.ov‘i?lfcns confidence in 77 4.51 1.20
prediction . .
14 Good profile 770 445 153 The most effective explanation based on
15 Overall percent rated 4+ 75 4.37 1.26 Neighbors' ratings.
Complex graph: count, ratings, 74 436 147 User-based CF: Users who have similar
similarity ratings with you highly rated this item
17 Recommended by movie critics 76 4.21 1.47
Rating and %agreement of closest
18 heighbor 77 4.21 1.20

19 # neighbors with std. deviation 78  4.19 1.45 Shaded rows |.n.d|cate explanatlons with a mean
20 # neighbors with avg correlation 76| 4.08 146 @ response significantly different from the base

21 Overall average rating 77 3.94 1.22 cases (two-tailed a-= 005)

Explanation 11 and 12 represent the base case of no additional information 30

(focus on system: we recommend, focus on user: people are watching)
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Machine Learning vs Non-Machine Learning

* Most of them are non-machine learning approaches
— Highly explainable, but sometimes less effective in rating prediction accuracy

* Rise of Machine Learning Approaches
— The Netflix Prize, 2006-2009
— Netflix provided a training data
— 100,480,507 ratings, 480,189 users, 17,770 movies

— US$1,000,000 prize to teams that are 10%+ better than Netflix's own
algorithm for rating prediction on RMSE

Netflix Prize U:'UMPLE TEI)Z

Home Rules Leaderboard Update

Netflix Prize: Forum
Forum for discussion about the Netflix Prize and dataset.

Announcement

Congratulations to team "BellKor's Pragmatic Chaos" for being awarded the $1M Grand Prize on September 21, 2009. This
Forum is now read-only.

https://www.nettlixprize.com/ 31
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Machine Learning for Recommendation

* Why not directly minimize the rating prediction error?

- i (=
B C & U
L; ? 4 ? ? 3 ? ‘
g - ? ? ? 2//
-~ — A key task:
» ? 3 ? 5 — 7 Predict the
- missing ratings
ﬁ ? ? 1 ? ? 3
—
; 4 ? ? ? ? ?

Predict the Missing Ratings

32



Matrix Factorization for Recommendation

* One key idea of winning solutions
— Also called Latent Factor Models

— [Koren et al. Computer’2009]

U s

E Q0 ul

a 3
o B
a 3 5
a 1
gy 3
Original Matrix
Fui = Du i

0

$>06>8 &>

Latent Factors

4 \ ( \
D,D,D;D,D;D¢D, D4 D,D,D;D,D;D¢D,D4

)3 ' (0 X

-
et

C

(V]

min Y u=pl @) Ay NpulP+2 Y gl
u l

(WDER Goodness of fit

Regularization 33
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Explainability vs Accuracy

« Latent factor models
— More accurate (directly minimize prediction error)
— But less explainable (due to the “latent” factors) Latent Factors

—
E i g @ Q 61DzDs|34Dsr-)st7D:® D,D,D3D,D5D6D;Dg

X

(3] <] Y 3 B

068 &>

@) m e )

34
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From Shallow to Deep: More Explainability Problems

« MF is a shallow network
— Each latent factor is a neuron

* More explainability problems from Shallow to Deep
— No explicit meaning of the neurons, non-linearity

7 Tui

Tui T

AN

[ [ [ I 1 ] Latent
[ I I [ [ ] neurons

User represg //fgf” *‘1?::-\\ presentation
- -

Shallow, Bi-Linear Deep, Non-Linear

Latent
factors

35
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Explainable Recommendation

* From Know How to Know Why
— Can we develop algorithms that are both accurate and explainable?

« Explainable Recommendation Approaches
— Explainable Recommendation based on Matrix Factorization
— Explainable Recommendation based on Deep Learning
— Knowledge Graph Reasoning Approaches
— Post-hoc and Model-agnostic Approaches
— Others
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Factorization-based Approaches

* From latent factors to explicit factors

— EFM: Explicit factor models for explainable recommendation [Zhang et al.

SIGIR’2014]

— L2RF: Learning to rank features for recommendation over multiple
categories [Chen et al. SIGIR’2016]

— MTER: Explainable recommendation via multi-task learning in
opinionated text data [Wang et al. SIGIR'2018]

37
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Explicit Factor Model

Explicit factor models for explainable recommendation [Zhang et al. SIGIR’2014]
 Formally introduced the Explainable Recommendation problem

Basic idea: To recommend an item that performs well on the features that a user
concerns.

Users pay attention to
different features

| Review Sentiment
Corpus Lexicon

Items perform well on
different features

Recommend

38
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Explicit Factor Model

 User-Feature Attention Matrix

>

- s, 9

g8 EB8EE

o 0=>833 >

{0, if user u; did not mention feature Fj I
ij = 2 Sparse
1 N—l(——l), else P
ul ) 1+ e tis
t; is the frequency that user i mentions feature j
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Explicit Factor Model

Item-Feature Quality Matrix

Yij; = N -1

1+ W, else
k is the frequency feature j is mentioned on item i

s;i is the average sentiment of these mentions

{0, if item p; is not reviewed on feature F;

>
> = )
5g E58%SE
%.Emm%&)se
a0 =20BR Ao
/Z

Sparse

40



2 f¥3y UMASS
o, A/ AMHERST

Explicit Factor Model

 Integrating the Explicit and Implicit Features

Ground truth

Implicit Features

N

Explicit
Features

[Screen] [Eaphone] [ttery] ------ [os] [Memory] )

minimize {|[PQT - A||%}+[Am||U1vT — X[ ATV - Y3

Ui1,U2,V,H1,H2

(|07 + 1U2F) + A (| Hall7 + (| Hz7) + /\vIIVII?r}

P = [U, Hy], Q = [U Hy] N 41
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Explicit Factor Model

« (Generating recommendation list

= -
> I~ Q c Q
= S _ §$ 9T e S,  § ST
£8 §98972§ g8 Foeozg
T =swn @3 50 & o wn @3 5o O
oo O0O20wvwnao ma O20wvwnao

User-based feature
selection: select the
top-k most cared
features for vector
multiplication.

I

8068 &>

o

For each user i, rank the items with the ranking score:

Zceci X~ic?jc 1
' kN + (1 _ O:)Aij "

R;; =
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Explicit Factor Model

Feature-level explanation for a recommended item

You might be interested in [feature],
on which this product performs well.

> Py
— ) > c @
g OLS.E'U EOJ ggm.‘:"c
£8 58925 ES , 32825
Bt w35 56 C mLWEOUmh
na O20wvwwnao o a O O WV wnwao
~ i
‘ ﬁ L~
E
~ (3

43
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Learning to Rank Features

« Learning to rank features for recommendation over multiple categories
[Chen et al. SIGIR’2016]

— Generalize EFM:

* From User-Feature and ltem-Feature matrix factorization to User-ltem-Feature tensor
factorization: user may only like a feature over a certain item instead of globally

* From point-wise prediction to pair-wise learning to rank: improves ranking performance
User-ltem-Feature interaction

K-—1 K-—1 K-—1
- A U UF I IF U I
é Tm‘f=ZRuk'Rfk +ZRik'Rfk+ZRuk'Rik
- \ k=0 k=0 k=0
oy — taste Pair-wise learning to rank over features
~ battery ~ sweet = A A a
 screen shelf-life § Tuifafp = Tuifa — Tuifp
—= ht ~—— nutrition .
aﬁﬂ"m green-product 3 Tensor factorization
=
I mein Z E(Aui — (RY)T - RL)?
=] @ & A — u€eU i€l
'~ Q,E -9 £ aAw N —/\ZZ Z Z no(Tuigars) + X 6|3

uel i€l fAEF,T‘v fﬂepu_.‘

44
T, directly give us feature-level explanation (selected feature is item-specific)
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Multi-Task Learning for Explainable Recommendation

« Explainable Recommendation via Multi-Task Learning in Opinionated
Text Data [Wang et al. SIGIR'2018]

— Two tasks: 1. User preference modeling for recommendation
— 2. Opinionated content modeling for explanation

1

o

User’s preference (Tom to Screen)

N Tk
[Featu re-level 3 4 5 3

Recommendation: « !
u Large\high-definition\bright\durable
User: Tom E 15 (16 |10 |9
/Large\

Feature: Screen Element-wise product \bright\durable

Item: iPhone8 .
Y. . Explanation:
2 The screen of iphone8 is
high-definition and large.

0
F 2 ’ Item’s Property (iPhone8 to Screen)
f 5 (4 |2 |3
| ' Large\high-definition\bright\durable

45
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Multi-Task Learning for Explainable Recommendation

« Explainable Recommendation via Multi-Task Learning in Opinionated
Text Data [Wang et al. SIGIR'2018]

Overall ratings

User « Task relatedness is captured
J ‘j O by sharing latent factors of U, |,
U F, O across the tensors.

Feature

* Improve performance of each
Opinion task by multi-task learning.

Phrase

Item

* Also helps alleviate sparsity

MTER problem.

46
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Experimental Evaluation
« Recommendation Performance [Wang et al. SIGIR'2018]

Dataset Amazon (Cellphones & Accessories)

Methods Point-wise Learning Methods Pair-wise Learning
NDCG@K | Most Pop NMF EFM BPRMF MTER
10 0.0930 0.1879 0.1137 0.1182 0.1362
20 0.1278 0.0829 0.1465 0.1518 0.1681
50 0.1879 0.1614 0.2062 0.2070 0.2268
Dataset Yelp

Methods Point-wise Learning Methods Pair-wise Learning
NDCG@K | Most Pop NMF EFM BPRMF MTER
10 0.1031 0.0581 0.1056 0.1244 0.1384
20 0.1359 0.0812 0.1366 0.1634 0.1812
30 0.1917 0.1366 0.1916 0.2213 0.2369

Explainable recommendation methods are comparable to or better than traditional

(non-explainable) recommendation methods

47
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Experimental Evaluation
« Explanation Performance [Zhang et al. SIGIR’2014]

e 3 user groups
— A (experimental group): Receive personalized explanations
— B (comparison group): Receive the ‘people also viewed’ explanation
— C (control group): Receive no explanation

User Set A B C

Records #Record | #Click | #Record | #Click | #Record | #Click
15,933 691| 11,483 370 17,265 552

CTR 4.34% 3.22% 3.20%

Providing explanations improve the persuasiveness of system decisions.
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« Explanation Performance [Wang et al. SIGIR'2018]
— Effectiveness of different explanations may be different

Amazon Dataset Q1 Q2 Q3 Q4 Q5
BPR 3.540 3.447 - 3.333 -
Mean
Value EFM 3.367 3.360 3.173 3.240 3.227
MTER 3.767 | 3.660 | 3.707 | 3.727 | 3.620
Paired MTER 0.0142 | 0.0273 0.0001
poc | Vs BPR | ' '
MTER 0.0001 | 0.0027 0 0 0.0004
vs. EFM | ' '
Yelp Dataset Q1 Q2 03 04 05
BPR 3.400 3.387 - 3.180 -
Mean
Value EFM 3.540 | 3.473 3.287 3.200 3.200
MTER 3.500 | 3.713 | 3.540 | 3.520 | 3.360
Paired MTER 0.1774 | 0.0015 0.0013
procy | Vs BPR | | '
MTER
0.3450 | 0.0128 | 0.0108 | 0.0015 | 0.0775
vs. EFM

Five Survey questions for users:

Q1:

Q2:

Q3:

Q4:

Q5:

Generally, are you satisfied with
this recommendation?

Do you think you get some idea
about recommended item?

Does the explanation help you
know more about the item?

Do you think you gain some insight
of why we recommend this to you?
Do you think explanations help
you better understand our system,
e.g., based on what we made the
recommendation?

Users do have different feelings of different explanations.
Providing good explanation is important.
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Short Summery

« A series of work on making latent factor models explainable
« Key idea: assign “explicit” meanings to the “latent” factors
« Better recommendation performance, better explainability
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Explainable Recommendation with Deep Models

« Explainable Deep Models over Text

— Based on Attention Mechanism
« Word-level Attention [Seo et al. RecSys’2017]
« Review-level Attention [Chen et al. WWW’2018]
 |tem-level Attention [Chen et al. WSDM’'2018]
— Based on Textual Explanation Generation
« Sequence-to-Sequence Models with LSTM [Li et al. SIGIR’2017]
» Generative Adversarial Networks (GAN) [Lu et al. RecSys'2018]

« Explainable Deep Models over Image

— Based on Attention Mechanism
» Image Region-of-Interest Explanation [Chen et al. SIGIR’2019]
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Word-level Attentive Explanation

Interpretable Convolutional Neural Networks with Dual Local and Global
Attention [Seo et al. RecSys’2017]

T

ul
( dot product )
L-Attn: Local attentlon,_learns |
which words are more informative
in a local window of words.

max pool over max pool over max pool over max pool over G-Attn: Global attention, learns

which words are informative
( convolution ) ( convolution ) ( convolution ) ( convolution ) |n the entlre teXt

@ ) e [ |e) @ ) (=] ["]e
( local attention ) (globalattention ) ( local attention ) Cglobal attention )
ctrrry frfrr) ety ceerfrfr)

w1 W; Wr w1 W Wr Wi W Wr w1 W wr
L-Attn G-Attn L-Attn G-Attn
User Network Item Network
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Word-level Attentive Explanation
« Highlighted explanation words by local and global attention

Yelp (user), D-Attn model: local attention Local attention: highlighted words
They carry some i8N things that you can’t find anywhere else. The staff is | ar€ important words (i.e., words

- cool - in Arizona. I prefer ma-and-pa. They - you that have high attention)

the - and they value your business - They are good people - Observation: Local attention helps
to select informative words for

prediction and as explanation.

atmosphere and music. I definitely believe that Lux has the best coffee I've ever

had at this point. Screw all my previous reviews. This place has coffee down, they

make - good toast too .

Yelp (user), D-Attn model: global attention Global attention: highlighted words

- carry some rare - you can’t find m are unimportant WOII'dS (i.e., words
that have low attention)
pretty damn cool too best in Arizona. I prefer ma-and-pa. They treat - best

and they value your business extreme. They are good people great atmosphere Observation: Global attention helps

to eliminate unimportant words
- music. I definitely believe that Lux has the best coffee T've everhad at | for petter prediction.

- point. Screw all my previous reviews. This place has coffee down, -

make damn good toast too.
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Review-Level Attentive Explanation
» Attentively select useful reviews as explanation [Chen et al. WWW’2018]

9

[

Predictionlayer ]

[ Element—wise product ]

[ -

Userid embedding

)

i

Qy2

Users' Reviews' Attention

lu1

=
.

[

CNN

oo - ©

\ User Modeling

luj

/

Reviews written by the user

K )

Item id embedding

!
E a;; Oy
. I=1.k
! ’ e !
iy iz Ak

[ Items' Reviews' Attention ]
@ Uiy z @ Uik

[ CNN

]

Reviews of the item

a’; = h" ReLU(Wo Oy + Wyuyp + by) + b

exp(a?,)
a1 = g L - Oi = Z a;10i1
2o explay)) I=1,...k

Attention mechanism learns the
importance of each review
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Review-Level Attentive Explanation
Provide selected useful reviews as explanations

Item 1

a (aij=0.1932)

These brushes are great quality for children’s art work. They seem to last well and the bristles
stay in place very well even with tough use.

b (aij=0.0161)

I bought it for my daughter as a gift.

Item 2

a (a,-j=0.2143)

From beginning to end this book is a joy to read. Full of mystery, mayhem, and a bit of magic
for good measure. Perfect flow with excellent writing and editing.

b (aij=0.0319)

I like reading in my spare time, and I think this book is very suitable for me.

Examples of the high-weight and low-weight reviews selected by the model
(Item1 from Amazon Toys and_Games, ltem2 from Amazon Kindle Store)
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Review-Level Attentive Explanation
« Crowd-sourcing based Usefulness Evaluation of the Explanations

Annotation Instructions 1:

Background: You are going to buy an item, so you want to refer to the
reviews written by previous consumers to know more about this item.
Task1: You need to browse each of the reviews below and then
determine whether it is useful for your purchasing.

The review can be classified as follows:

* 1 star: Not useful at all.

* 2 stars: Somewhat useful.

* 3 stars: Fairly useful.

* 4 stars: Very useful.

Annotation Instructions 2:

Task2: You will see two groups of reviews, and each group contains 5
reviews. You need to browse each group and annotate pairwise
usefulness between Group A and Group B.

* A is more useful than B.

* B ismore useful than A.

* A and B are almost the same, both useful.

* A and B are almost the same, both useless.

60.00%

50.00% r

o, |
40.00% o]

30.00% 2
03
m4

20.00%

10.00% [

0.00%

Top rated NARRE

B A is more useful than B

OB is more useful than A

B A and B are almost the same, both
useful

O A and B are almost the same, both
useless

Most of the selected review explanations are
rated “useful” by users.

Group A: top-5 algorithm selected reviews.
Gropu B: top-5 reviews rated helpful in Amazon.
In 67% of the cases, selected reviews are equal
to or better than Amazon user rated revieyy,s.
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Item-Level Attentive Explanation
»  Sequential Recommendation with Memory Networks [Chen et al. WSDM’2018]

— Which previous item(s) influence the recommended item?

~
Yui

; Ty lrRum = log l—] (Gui) ¥ (1 = Gui) ' Y = 2110]|F
ITEM EMBEDDING (u, i)

pu I .
(usen wevony ewseooiG ) — Z Zlogyu, Z Z log(1 = gui) = Al©IIF

- T === ml u el u jelll}

' (M)T (M™)" :

: «+-1

I exp (Bw;r)

: C o, J<>- = (qou)’ -mY, z ikl Vk=1,2,---.K

L e B e e ey ML

e ey - - '

Zoe I K

I C a, « == I m u

. Write : Pu = Z Zjj -my

. User Memory Network | k=1

Attentive selection over the latest K (e.g., 9) interacted items of the user through
memory network.
Attention weighted show which previous item(s) highly influence the recommendation.
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Item-Level Attentive Explanation

Two types of influence patterns

One-to-Multiple: an item
consistently influence subsequent

user behaviors.

One-to-One: previous item
influences the current item, and

5

- . .
: current item influence the next
- &1 item...
= =
% L1
5
Qo
£
©
&
e
E []
5 10 0 5 10 fS 20
Purchasing order (x) One to multiple One to one
Patterns: .
om— . ' | v —
Examples: i K3 - ‘ /
p N__. ‘@ ‘L‘l":‘; & e
Crib Protector Mosquito net Crib bell Infant formula Feeding bottle Nipple Nipple cleaner
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LSTM-based Textual Explanation Generation
» Sequence-to-Sequence Models with LSTM [Li et al. SIGIR’2017]

(r—r)° 1 —Z”‘Exlog p(w)
1
\
Rating | Tips: | Really good pizza ! <eos>
] s
1 (0
J
[] " Review [LL] (L] L[]
l b
1
L] o L1 D oL T ——{1T] (L] (L]
| Cix
\"*"*“7'—‘“-_‘""*"*“7“‘—;"‘4 """"""""""""""
[T e 1] [T [T
|
U \Y% 1 E
1
User Item | Really good pizza !
1
Rating Regression Abstractive Tips Generation

Rating prediction based on An LSTM generator to predict the ground-truth tips of the user

learned latent user and item  item pair, personalized by the user-item embeddings and rating.
embeddings. 50
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LSTM-based Textual Explanation Generation
» Sequence-to-Sequence Models with LSTM [Li et al. SIGIR’2017]

Rating Tips
4.64 | This is a great product for a great price.
5 Great product at a great price.
4.87 I purchased this as a replacement and it is a
perfect fit and the sound is excellent.
5 Amazing sound.
4.69 I have been using these for a couple of months.
4 Plenty of wire gets signals and power to my amp
just fine quality wise.
4.87 One of my favorite movies.
5 This is a movie that is not to be missed.
4.07 Why do people hate this film.
4 Universal why didnt your company release this
edition in 1999.
2.25 Not as good as i expected.
5 Jack of all trades master of none.
1.46 What a waste of time and money.
1 The coen brothers are two sick bastards.
4.34 | Not bad for the price.
3 Ended up altering it to get rid of ripples.

Bold line: Predicted ratings and

generated tips.

Second line: ground truth tips.
Tips

TD 6/
Pass on the bison. Lobster tail,
WS risotto, beef, duck breast are good

Morgan G.
Everything was absolutely mcredlble
Service. Food. Atmosphere. All

perfect!

Praveen K.
The risotto was excellent. Amazing
service.

b Amy L. )
Great service and food. Deflnltely not
“W% ajeans and t-shirt place.

Michelle D. 3/31/14
Service and staff here is one of the
best in all of SF! | was so impressed!

Madhulika G. 712314
You have to make reservations much
in advance

61
Sampled tips on Yelp
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Explanation Generation with GANs
* Generative Adversarial Networks (GAN) [Lu et al. RecSys’2018]

4 Matrix Factorization \

-~
% ” \\‘
-
. ]
] 1
/

BN TR

LTSIy T [alc)

A
User, taxtisal Features Item, textual Features" k User, Latent Features Item, Latent Features )
Learning from Ratings

maxg Ey~p,.,a [logD¢(Y)] +Ey -G, [log(l - D¢(Y’))]

N M
~ ~ 1 Tyr\2
LWU.VIRT.V) = 2 Z ; Iij(Rij - U['V))

User/'s Reviews Item/’s Reviews

Ay ~ ., Ay —
/ + 5 IU =Ulig + =~V = V.

Learning from Reviews

Regularizers force user/item features to approximate each other



o ln‘(’
& %
CRA R AN

W AMHERST
D, . o4
LgrssS

Explanation Generation with GANs

 The learned generator generates personalized user-item pair explanations.
— Concatenate user and item textual features and feed into the review decoder.

Model Y13 Y4 AE AV AG  Y13: Yelp 2013 dataset

N-gram  0.007 0.009 0.005 0009 0011 Y14:Yelp2014 dataset
Skip-gram  0.009  0.014 0.007 0.011  0.015 ﬁ\'ff QT:ZZS: 5;;;;%‘;? o
LSTM 0019 0022 0014 0017 0019 el IO
Opinosis ~ 0.029 0.031 0029 0.025 0.027

MT-U 0.048 0.043 0.042 0.044 0.047 MT-U: user-level explanation
MT-I 0.051 0.045 0.046 0.049 0.049 MT-I: item-level explanation
MT-P 0.053 0.052 0.049 0.042 0.051 MT-P: user-item pair-level explanation

Explanation performance in terms of tf-idf

(both ground-truth and generated review are
represented as a tf-idf vector of vocabulary size,
cosine similarity between ground-truth and
generated review explanation is reported)

Explanations should be relevant
to both user and item.
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Attentive Visual Explanation over Images
Visual Explanation based on Image Region-of-Interest [Chen et al. SIGIR'2019]

Yo v 7% Great material, loose fit around the waist 1. |mage feature extraction: divide image
By Maureen Button on November 2, 2017 . . .

1 ,S;e: :led(i?jm/us 8-10 Color:Black Verified Purchase A by 14*14, eaCh reg|0n IS fed Into VGG
Great material, loose fit around the waist. Nice wide network tO generate a 51 2_d|m VeCtor
pening, very stylish looking. )

| . 9% 1 absolutely love this tunic ‘ 2. Attention mechanism learns the
By Amazpn Customer on November 30, 2017 . .
y B importance of each region.

Size:Small/fJS'd-Q Color: Wine  Verified Purchase

Nice quality, ir;E:rediny soft (especially the blue one) ajjk = E2[ReLU(E; [(Wypi) © (Wff}k)])]

and really nicd pocket pize. Received numerous exp(aiik)
Qijk = Th
2=y P (ajkr)

compliments o is.

I like the collar

h k
Iij = Fjlli_,‘ = Zk:l Ajjk f’

3. Aggregated user, item, and image
I embedding used to predict the user
review based on GRU.

—
;| I '_ — ‘
Attention Net ¢ \‘}
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Attentive Visual Explanation over Images
« Visual Explanation based on Image Region-of-Interest [Chen et al. SIGIR'2019]

Method Random | VECF(-rev) VECF

M=1 0.777 1.220 2.273 (86.3% T)

M=2 1.430 2.012 3.180 (58.1% 1)

Fq M=3 1.968 2.516 4.513 (79.4% T)
M=4 2.281 2.857 4.514 (58.0% 1)

M=5 2.749 3.350 4.774 (42.5% 1)

M=1 2.975 4.348 7.551(73.7% 1)

M=2 2.975 4436 6.666 (50.3% T)

NDCG| M=3 3.458 4.254 7.089 (66.6% 1)
M=4 2.882 4.039 6.320 (56.5% T)

M=5 3.501 4.284 6.455 (50.7% T)

VECF(-rev): remove the GRU review
prediction component.

Observation: Including reviews is much
better. i.e., there exist useful correlation
signals between image and reviews,
e.g., user comment the image features
in reviews.

For each image, the correct top-5 explanation regions
are labeled using crowd-sourcing.

Algorithm predicts the top-M region of interest.
All numbers are % numbers

65



Attentive Visual Explanation over Images

4 RUTGERS (&) i1 % £ %

7 Tsinghua University

7¥3y UMASS
Wy AMHERST

Visual Explanation based on Image Region-of-Interest [Chen et al. SIGIR'2019]

Target Item

Historical Records

Textual Review

Visual Explanation

VECF | Re-VECF

c

this is a large watch... nearly as large as my suunto but due to
its articulated strap it fits on the wrist very well.

\*

o

this is a really comfortablg v-neck. i)found that the size
and location of the v are jus for me.i'm 5’8 & #34,
but 200 Ibs ( and dropping :) )

nn

Great leggings. perfect for fly fishing or hunting or
running. just perfect anytime you are cold!

&

The socks on the shoes are a perfect fit for me. first time with
a shoe with the speed laces and i like them a lot

4
b

Really like these socks! they are really thick woolen socks and
are good for cold days. they cover a good portion of your feet
as they go a little (halfway) above the calf muscle area.

3
A}

,-

@

I like the front pocket~! Very cool!

Flee=xlN
© R e A
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Short Summary

« Explainable recommendation based on both Text and Image

« Most methods are based on attention mechanism

— Learning “weights” as explanations, similar to what did in simple linear
regression.

« (Generating natural language explanations
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Explainable Recommendation based on KGs

 KG is a Flexible Structure
— Easy to integrate various heterogeneous information

« Bridge Symbolic Reasoning and Neural Modeling

— Unite GOFAI (Good-Old Fashioned Al, dominate Al approach before 1980s)
and machine learning/deep learning (dominate Al approach after 1980s)

— Improves both Explainability and Accuracy
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Explainable Recommendation based on KGs

* Mostly based on Explanation Path between User and Item Entities
« Embedding Learning Approaches

— Learn some kind of user and item representations from KG

— Recommendation based on the similarity between user-item entity
» Translational KG Embedding for Rec and Explanation [Ai et al. Alg’2018]
» Propagating User Preferences on the Knowledge Graph [Wang et al. CIKM’2018]
« Learning Path Embedding for Recommendation [Wang et al. AAAI'2019]
« Jointly Learning Explainable Rules for Recommendation [Ma et al. WWW’2019]

« Symbolic Reasoning Approaches

— Recommendation based on path reasoning beginning from user entity
» Reinforcement KG Reasoning for Explainable Recommendation [Xian et al. SIGIR'2019]
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Embedding Learning Approach

« Recommendation based on the similarity between user-item entity

« Reasoning using hard-rules over KG is inefficient and difficult to generalize
« KG embedding makes it easier to calculate the similarity between entities

Miami TransE: translation-based embedding
htt~t  dh+2t)

?/-) Mom
/ Minimize the hinge-loss to learn entity and

Jane © john relation embeddings
(=Y hrdnren-daw e,
Austin (h,L,t)eS (h/7e’t,)eszh,£,t)
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Translational KG Embedding for Recommendation

« Learning heterogeneous knowledge base embeddings for explainable
recommendation [Ai et al. Alg’2018]

() ro -7~ ~~"""=======-=13 ===~ ========- L ey " )
Words Iltems :Categozy Write

—> Search&Purchase

I I
l l
| I I
| Lighting | :
: cable n’/;d/ : —-<4> Aalso bought
| i | SmartPhone!
. | @ |
: '\//4/4 --------- ----> Also_viewed

—> Bought together

—— - ————— - — - — -

~ Brand

—> Category

er = trans(e,, 1) = ey, + 1 Recommendation:
Calculate euser"'rpurchase
P(e;|trans(ey, 1)) = exp (et - trans(ey, 1)) Find top-K nearest item entity

Yo ek, exp(eq - trans(ep, 1))

L(S)= ) logo(es-trans(en, 1)) +k-E, pllogo(—et - trans(ey,1))]
(ehretr )ES 72
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Translational KG Embedding for Recommendation

« Learning heterogeneous knowledge base embeddings for explainable
recommendation [Ai et al. Alg’2018]

Mention —>Produced by —>Purchase Find an intermediate entity e,

m n
ey + Zra:ei+ Efﬁ
: . ' a=1 B=1

Apple
Calculate connectivity of the path:

P(ex|trans(e,,Ry)) =

exp(ey - trans(ey, Ry))
Yo' cEm exp(e’ - trans(ey, Ry))

..............................................

iPad

Uses ftems " P(ex|ew, Ras€;, Rg) =

Post-hoc explanation by finding a path between P(ex|trans(eu,Ra))P(ex|trans(e,-,R,3))
user and the (already) recommended item.
Rank explanation paths based on

connectivity.
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Propagating User Preferences on KG

* RippleNet: Propagating user preferences on the knowledge graph for
recommender systems. [Wang et al. CIKM'2018]

Seeds: user 1-hop related 2-hop related H-hop related
interacted entities entities entities entities
Seeds Hop 1 Hop 2 Hop H
Knowledge A~ Yl O oo > (glpgmt \ O .. - e eee e
h
grap 3 3
ripple set S} ripple set S2 ripple set S
P - propagation propagation ,
[useru |— puser clik (hr) >t (1)~ (hr) -
| Rl B—

e | R — [ Bl | S m—
(] -~ s Bl | E) e— N ©
pitemvy F—— > oo — — y
Mmoo ' item I — [ -~ [ (weighted /-~

embedding — [ - ) 2verese - predicted
ftm probability
Rh softmax ¢ —0-____] | ||
—‘7 T T user
embedding
Attentively select entities Calculate user-item similarity

based on memory network for recommendation 74
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Propagating User Preferences on KG

* RippleNet: Propagating user preferences on the knowledge graph for
recommender systems. [Wang et al. CIKM'2018]

hop 3
hop 2 Back to
My Heart |the Futurel 2004
Will Go On

director.film

hop 1
film.year

Robert

film.music Zemeckis

film.rating

film.language

actor.film

film.language

film.rating

English

Explanation path constructed by selecting the most significant entity in each hop.

, watched directed by i — . _directs ‘
user — Forrest Gump > Robert Zemeckis ——— Back to the Future
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Learning Path Embedding for Recommendation

« Explainable Reasoning over Knowledge Graphs for Recommendation

[Wang et al. AAAI'2019] ’,:\‘ &
ot g SN,
o7 g i"'so,,e Multiple path
Cd
- 1 tween user
< SungBy IsSm rOf be
> = = ~.— —» Ed Sheeran <« g_ %@Castle on the Hill
A TEeT > | interacted item
Alice % Snre™ ~» Pop “G’e“‘e /“ d candidat
S & —m and candidate
%% M S items
2" Tony Z - Gene )
Folk &
N J
Song the user has Y Songs the user may
listened to before Knowledge Graph be interested in
I I L T L T I D T LT L L LT L L I D I T T T (Alice, Interact, | see Fire) ?
B S A S
. i D e e e SR  Prer i Q__O__Q_Q « S(|P)
5 hy ha hs ha, hs \".QQ_-Q.Q; ;
=) 8 L = L B T0000
2t fm oo P ] 7S Jws G
g (. Alice ey Shape of You | e, Ed Sheeran |e; = e, Isee Fire |es 3 i E Pooling Layer
o I ® ® ® ® "1 Pooling layer
S | User e’y Item e, Person |e'; Album e’ Item e, s i“E for S|m||ar|ty score
E : @ @ @ @ @ “" :— !
E U] Interact 1 SungBy 2 Produce 3 ContainSong T, <End> Trull -
Each path represented as a path embedding using LSTM 76

(input: entity embedding + entity type embedding + relation embedding)
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Jointly Learning Explainable Rules for Recommendation

« Extract rules from knowledge graph for recommendation [Ma et al. WWW’2019]

Rule Learning Module
Learning Rules Rule Selection
________________ w: Importance of a rule

Phones. # Accessories. - - (oh foct,

i | (phones.manufacturer, .
M’; M g accessories. manufacturer_l) 0_12 Iea rned by featu re Se I eCtIOn

i | = Buy Together X(a.)]

(phones.manufacturer, rivals, : . 2
[ i | phones.manufacturer?) 0.21 Z Z (wi - x(a,b)(l) +b - ya,bIA)
Also: View Rival i | = Also View allpairseA i=0

(phones.manufacturer, rivals,

Phones. Accessories. -1 . ‘e
i | laptaops. fact ) 0.03 — .
Manufacturer :Manufacturer ipAZva;::nu aetrer X(a,b)(l)—P(bla, R,) prObabI|Ity
| (phones.manufacturer, that a and b are linked by R;
y : accessories.earsets..manufacturer—1) 0.14
S~~.__BuyTogether ___--~ i |2 BuyAlso
Black edges: Relations ya,b|A=1 if a, b are truly linked

Colored edges: Item associations

by relation A (e.g., buy together)

Rule: a sequence of relation types: e.qg., rq-ro-rqy-r3

Connection strength ,
between items a & b PGla.R) = > Plela,R)- P(ble,ry).

through rule R eeN(a,R’) 77
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Jointly Learning Explainable Rules for Recommendation

« Extract rules from knowledge graph for recommendation [Ma et al. WWW’2019]

g Module

Rule Selection

(phones. manufacturer,
accessories. manufacturer=")
— Buy Together

0.12

(phones.manufacturer, rivals,
phones.manufacturer™*)
— Also View

0.21

Recommendation Module

0.12

0.21

(phones.manufacturer, rivals,
laptaops.manufacturer —*)
— Also View

0.03

(phones.manufacturer,
accessories.earsets..manufacturer=1)
— Buy Also

0.14

0.03

0.14

)

—

x Rules +

¥

Recommended
items

Earset

Laptop

Purchase
history
iPhone

Battery

Monitor

Rule: a sequence of relation types: e.qg., rq-ro-rqy-r3

Connection strength
between items a & b P(bla,R) =

through rule R

eeN(a,R)

> Plela.R))- P(ble.ry)

Recommendation provided by
user history and rule importance

For a candidate item /, ranking score
is calculated based on the rules
between i/ and each of the user’s
history items, weighted by rule
importance.

The most important rule serves as
the recommendation explanation.

/8
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Reinforcement KG Reasoning

» Reinforcement Knowledge Graph Reasoning for Explainable Recommendation
[Xian et al. SIGIR’2019]

« Paradigm of previous methods: for each user, for each candidate item, calculate
ranking score based on path info between this user-item pair.

 Too many candidate items: Can we avoid enumerating all candidate items?

__________________

Policy/Value Network

i : !
I : : : ! I
: t rt 1 State St _ | st All,[ : : ~ |
| sta f i) Gg |Prunedaction space AW [OOOO] [O O Q] | | T(aelSe, Aye) bath :
! u t=1 ! |
I )/ AN u : | Input > : l I | —_G—’ Reasoning :
L, i t=2 | [ ] | , R |
C X i : | Fe : : @ Predict
1 b | | | [
: ! f I Action a; ! ,@ I : . !
! I : \t=3 f I I I I NG .
| : | Interact | 1 FC | ! y - |
| | Y : |
: ‘\ c __ i) I I /@\‘ : : A N ’ L I :
I “ - - I | v ) : u \\ -------- |
T ! Reward R, . [ FC ] [ FC X I IR NN - b heeemt i :
: Y _” o (@ 9] : | Feedback > : l ® : [ ‘\‘ h - P
C o f@d = +81+|8 B[+ ) | : : \ i Leees e ) !
| g e o | © o o, G —_ i
| Score function® Tt T2 T3 1 | v (s m(ac|se, Aue) | : AU i nb '

KG Reasoning: train an agent, which starts from a user and walks over the graph, and
reach a “good” item node with high probability.
RL-based training: reach positive item — high reward, reach negative item - low reward.
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Reinforcement KG Reasoning

» Reinforcement Knowledge Graph Reasoning for Explainable Recommendation
[Xian et al. SIGIR’2019]

Case (1) e i The reasoning path (how
e—purchase—> i [ %E:E: ;’E:::) the agent reached the item
— i T~ lightening” «— = from the user) naturally
shampoo conditioner;  gerve as the explanation.
Case (2)

llrUnll
mention™ > ~*—mention .
purchase—p» SO~
mention mention el

A "comfort" 4

user another user running shoes
Case (3)
D s F )
.
efpurchaseﬂ —also_viewed——p <—also_bought_ g
: b TETE
user charger line case
Case (4) - >
. Hello Kitty pes
urchase 4 __belongs_to belongs_to— =,
&p — {6% gs_to—{ (ategory) | gs_ /"’-’:
user neck chain key chain
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Short Summary

« Explainable Recommendation based on KGs
— Mostly based on Explanation Path between User and Item Entities

« Embedding Learning Approaches

— Learn some kind of user and item representations from KG for recommendation

« Symbolic Reasoning Approaches

— Recommendation based on path reasoning beginning from user entity and reach
a good item entity
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Post-hoc and Model-Agnostic Explanation
* Provide explanation for a (possibly unexplainable) model

* Mining-based Approach

— Explanation Mining: Post Hoc Interpretability of Latent Factor Models for
Recommendation Systems [Peake et al. KDD’2018]

« Learning-based Approach

— A Reinforcement Learning Framework for Explainable Recommendation
[Wang et al. ICDM’2018]

83



Post-hoc Explanation based on Association Rule Mining
» Explanation Mining: Post Hoc Interpretability of Latent Factor
Models for Recommendation Systems [Peake et al. KDD'2018]

RECOMMENDATION MODEL EXPLANATION MODEL
dt usedto
Input: uifaino Model: generates  Qutput: train Model: generates Output:
: . o . L. . . . Top N association rule
User-item rating —— Matrix Factorisation = User-item rating == Association Rules ———* recomenendations per
matrix, R (black-box) predictions matrix, R (white-box) user and explanations
) Rule Supp Conf Lift
filtered A=B 04 | 07 1 filtered
A=C 06 | 04 | 09
Output: B=D | 02 | 08 | 16 Output:
Top N matrix factorisation Association rules for
recommendations per matrix factorisation
user predictions
User Recommendation User Recommendation Explanation
1 B 1 B A=B
2 C 2 c A=C
3 D 3 D B=D
Recommendation list by a black-box model Extract associate rules X->Y based on the
(e.g., latent factor model) completed matrix R. (For each user, take
top-D highly predicted items as a transaction)
Unexplainable ltems X in training data, Y not in training data. Rank items according

to some interestingness score (support/confidence/lift). 84
“Explainable Items” (because you liked X)
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Post-hoc Explanation based on Association Rule Mining
« Evaluate explainability based on Model Fidelity

IMF recommended items N AR retrieved items|  |explainable items N recommended items|

Model Fidelity = IMF recommended items|
Rules K Interestingness Flzlfioce(liftly
Support 0.522369
Global N Confidence 0.568602
Lift 0.423591
Support 0.828272
10 Confidence
Lift 0.412679
Support 0.791095
Local 50 Confidence 0.817715
Lift 0.452805
Support 0.770759
100 Confidence 0.799536
Lift

0.44886

|[recommended items|

Global rules: association rules
are mined with all users, each user
IS a transaction.

Local rules: each user’s association
rules are mined with this user’s top-K
similar user, each user is a transaction.

With appropriate nearest neighbor
and interestingness selection, 80%+
of the recommendations can be
post-hoc explained.
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Model-Agnostic Explanation based on RL

« A Reinforcement Learning Framework for Explainable Recommendation
[Wang et al. IDCM’2018]

Each item has several interpretable components.

E.g., a description sentence of a book: “As of Feb

Agent 1 selects explanations "
2018, the books have sold more than 500 million

£- [2.1’ 22.’ -+ Zm] copies worldwide, making them the best-selling book
zi=1: i-th interpretable component series in history”
is selected.

Couple Agents Enjronment
X State s = (u, v) ® A\ A\
.G
Agent 1: g Reward r .-. i i ‘@'
amssssssm——— el 6 ﬁ

Users U Items V Prior

Explanation z knowledge K

T o .
doop Asgent2:my Recommendation
) model to be explained
I

l Actiona = (z,y) f(u,v)
Predicted rating y I

Agent 2 predict the rating Reward: A recommendation model
based on agent 1's selected . — £( f(u,v),y) + Q(z) © Peexplained 36
explanations.
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Model-Agnostic Explanation based on RL

« Evaluate explanation based on consistency M. and explainability M,
Z (Qb(uv ’U) - cﬁ)(f(u,v) - f)

(u,v)eT

r —— I 2
> w0 [ > Guo—r Me=— ) (y-f(uw))

(w,v)ET (u,v)eT (w,v)eT

]\4(: -

Pearson correlation between the sentiment  Closeness between the ratings of the
of selected explanation sentences and the  explanation agent and the

output rating of the recommendation model. recommendation model to be explained.

M, M.
NMF PMF SVD++ CDL GT NMF PMF SVD++ CDL GT
Random -0.030 -0.030 -0.031 0.012 0.007 -0.478 -0.287 -0.266 -0.517 -1.488
NARRE -0.015 -0.000 0.018 0.031 0.038 -0.448 -0.266 -0.239 -0.482 -1.424
Ours 0.018 0.037 0.041 0.227 0.168 -0.421 -0.258 -0.232 -0.460 -1.380

Results on Yelp dataset, NMF, PMF, SVD++, CDL are models to be explained.
GT is the ground-truth score.
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Short Summary

Post-hoc and Model-Agnostic Explanation
— Provide explanation for a (possibly unexplainable) model

Mining-based Approach

— Extract association rules as post-hoc explanations

Learning-based Approach
— Learn an explainable model to approximate the unexplainable model
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Challenges and Directions

* Explainable Recommendation + NLP
— Generating Natural Language Explanations
— Explainable Conversational Systems: Answering the why in conversations

« Offline evaluation of explainability
— Current evaluation
 online evaluation with users (sometimes expensive and inefficient)
 case studies (only covers a small amount of cases)
« model dependent measures (depends on the model)
— Can we develop a general “explainability” measure?

« Explanation beyond persuasiveness
— Explanations are not (or should not) be used to just attract user click/purchase

— Should help users to make better decisions, improve user well-being, social

justice, and sustainability of the Web. %0
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Outline

« Background and motivation
— What is explainable search?
— Why do we need explainable search?

« Existing work on explainable search

— How can we make search models more explainable?
Building Interpretable search models

Using structured knowledge

Post-hoc explanation methods for search

Axiomatic analysis of search models

 Wrap up
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Outline

« Background and motivation
— What is explainable search?
— Why do we need explainable search?

» Existing work on explainable search

— How can we make search models more explainable?
« Building Interpretable search models
« Using structured knowledge
» Post-hoc explanation methods for search
« Axiomatic analysis of search models

« Wrap up
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Explainable Al on the Web

« Recent research on explainable recommendation and search

Is related to Explainable Al

. Search Engine
Computer Vision

Recommender Systems

Chatbots

Autonomous Driving

Robotics Explainable RS
Explainable Al | Explainable Search/ Al on the Web

Explainable QA

Web and IR Digital Financing
NLP ......

Machine Learning Sharing Economy

97
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Background

 What is explainable search?
— Search: one of the most important Al application on the Web

— In a narrow sense:
* How to build an interpretable search model
— In a broad sense:
* Re-examine the search problem from the explainable Al/ML perspective
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Motivation

« Why do we need explainable search?

« Give explanations to whom?
— Search users
— System designers
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Motivation: Why do we need explainable
search?

« To search users:

— A search engine is an interactive tool to access a huge information
repository

acm sigir 2016 @ ®
Needs o
sigir 2014
@

Information Google sane Q
s

Queries

/

Users z:»
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Motivation: Why do we need explainable
search?

« To search users:

— The user must have a correct mental model of the system about:
» The capability and limitation of the system

— e.g. Can the search engine answer natural language questions?

— Can the image search engine find pictures similar/identical to a queried
picture?

* When to trust the search system
— Are those top-ranked results good enough?
— Are they trustworthy?
— Are they biased?

« How to intervene when the results are not satisfactory
— Query reformulation
— Search strategies and expertise
« Better explanation may help the user build better mental
models for search
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Motivation: Why do we need explainable

search?

« Examples of explanations to users: search snippet

Explainable artificial intelligence - Wikipedia
https://en.wikipedia.org/wiki/Explainable_artificial_intelligence ¥

Explainable Al (XAl), Interpretable Al, or Transparent Al refer to techniques in artificial intelligence (Al)
which can be trusted and easily understood by humans. It contrasts with the concept of the "black box"
in machine learning where even their designers cannot explain why the Al arrived at a specific decision.

Goals - History and methods - Regulation

You visited this page on 5/5/19

Explainable Artificial Intelligence - Darpa

https://www.darpa.mil » Program Information ~

Figure 1. The Need for Explainable Al. Dramatic success in machine learning has led to a torrent of
Artificial Intelligence (Al) applications. Continued advances .

Explainable Artificial Intelligence - KDnuggets
https://www.kdnuggets.com/2019/01/explainable-ai.htm| ~

We outline the necessity of explainable Al, discuss some of the methods in academia, take a look at
explainability vs accuracy, investigate use cases, and more.

Should Al explain itself? or should we design Explainable Al so that it ...
https://towardsdatascience.com/should-ai-explain-itself-or-should-we-design-explaina... ¥
Mar 4, 2019 - Explainable Al (XAl )is NOT an Al that can explain itself, it is a design decision by
developers. It is Al that is transparent enough so that the ..

Today

O F 6
Tomorrow

©O6OFR6

An Explainable Al (XAl) or Transparent Al is an
artificial intelligence (Al) whose actions can be easily @ ) '
understood by humans. = =

Explainable Artificial Intelligence - Wikipedia
en.wikipedia.org/wiki/Explainable_Artificial_Intelligence
Is this answer helpful? 1 g1

Explainable Al: Making machines understandable for humans ...
https://explainableai.com v

There is no denying the fact that artificial intelligence is the future. From the security forces to the military
applications, Al has spread out its wings to encompass our daily lives as well. However, Al comes with its
own limitations.

Explainable Artificial Intelligence - DARPA
https://www.darpa.mil/program/explainable-artificial-intelligence ~

The Need for Explainable Al Dramatic success in machine learning has led to a torrent of Artificial
Intelligence (Al) applications. Continued advances promise to produce autonomous systems that will
perceive, learn, decide, and act on their own.

— Query-centric, with keywords highlighted
— Explain why a webpage is retrieved
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Motivation: Why do we need explainable
search?

 Investigating the interpretability of search result
summaries in a user study (Mi an Jiang, 2019)

733y UMASS

7 AMHERST

(b) usefulness s (b) usefulness
Table 1: Search result summary judgment questions. 5.0 TT— | [ rm—
451 medvs hlgI.\ et 435 4571 medvs. h'gh
. : J 4.0 A
By looking at the snippet, I can understand why 4.0
Transparency | the search engine returned this result for my 3.5 351
keywords “$q”. 3.0 1 3.0 1
Assesualbiity By looking at t}.le snippet, I. can tell 'if the result is 2.5 2.5
useful or not without opening the link. 204 2.0 -
By looking at the snippet, I expect the result - 15 -
Usefulness webpage to include useful information for the ’ 1.0
search task. MO ow(=3) med@)  highs) low( = 3) med(4)  high(s)
transparency assessability
- click rate click rate
transparency assessability
low vs. med: *** low vs. med: *
44.2 /042 7% 43.5% 80% - med vs. high: *** 77.9% 80% - med vs. high: *** 78.9%
62.6% 95.3%
60% - 60% 4 55.1%
40% 4 35.6% 40% -
20% 4 20% 4
Iow( =3) med(4) high(5) Iow( =3) med(4) high(5)

transparency assessability
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Motivation: Why do we need explainable
search?

« To system designers:
— Objective: to estimate the relevance of each query-doc pair and
use it to rank the document when given the query
» Retrieve model: f,(q, d)
— The ranking performance can be evaluated by a range of
evaluation metrics.

 Offline evaluation metrics based on relevance labels e.g. MAP,
nDCG...

* Online evaluation metrics: CTR, A/B test, SAT clicks...

— But evaluation metrics are still incomplete descriptions of the
search tasks
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Motivation: Why do we need explainable
search?

« To system designers:

— Interpretability of search models can help with:

» understanding relevance itself (i.e. why a document is relevant to a
query)
— Keyword match?
— Topically/semantically related?
— Usefulness?
« comprehensive analysis and evaluation of search models at the
global level
— Why the model works (better than other models)?
— Does the model overfit the test set?
— Fairness, Accountability, Credibility, Transparency, Privacy
 diagnosing and debugging the model at the local level
— Why the model fails for some queries?
— How to handle bad cases?
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Motivation: Why do we need explainable
search?

« To system designers:

— Ranking models are becoming more and more sophisticated:

* Retrieval models:
— TF-IDF, BM25, query likelihood model...

» Learning-to-rank models:
— RankSVM, LambdaMart...

 Neural IR models:
— DSSM, DRMM, KRM...

— A trade-off between the ranking performance and interpretability

— Understanding how these more powerful but more complex
ranking models work has become a new challenge
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Outline

« Background and motivation
— What is explainable search?
— Why do we need explainable search?

« Existing work on explainable search

— How can we make search models more explainable?
Building interpretable search models

Using structured knowledge

Post-hoc explanation methods for search

Axiomatic analysis of search models

 Wrap up
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Interpretability of retrieval model

« EXxisting retrieval models are quite explainable, for example:

— TF-IDF model:
° ftfidf(CI» d) = Zqund tf (w) - idf (w)
— Based on exact match between query and document terms
— Modeling the importance of query term with inverse document

frequency : idf (w) = logni

— Allows diverse matching patterns
* ignores the order and positions of matching terms

* Itis easy to understand how and why the TF-IDF model works
because it is designed in this way
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Integrate Interpretable Structure

 We can also design and integrate interpretable components
into the neural models to address these interpretable factors
— Exact matching signals

— Query term importance
— Allow diverse matching patterns

* A deep relevance matching model for ad-hoc retrieval
(Guo et al. 2016)
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Model Architecture

Score Aggregation

M
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(Guo et al. 2016)
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Model Architecture

* 1. Matching Histogram Mapping

— map the varied-size interactions into a fixed-length representation
— Groups local interactions according to different strength levels
— position-free but strength-focused representation

o« Ul s lal du wwe il « 1B Zi(O)

— Different mappings h():
» Count-based histogram: frequency
» Normalized histogram: relative frequency
» LogCount-based histogram: logarithm

=h(wi@®d),l =

|

cosine similarity
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Model Architecture

« 2. Feed forward Matching Network

— Extract hierarchical matching patterns from different levels of interaction
signals

Zi(o) = h(Wl-(q) X d), i=1,.. M

20 = tanh (WO +p0),  i=1,.,M1=1,.,L

- Q Q Q
OOO O 00O OO0
Feed Forward : :
Matching Network QQ QQ QQ QQ QQ QQ
566 -000 606 ~00D 666 - 00k
Matching Histogram g = | g |} dr sm. wmn Ll

Mapping
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Model Architecture

« 3. Term Gating Network

— Modeling term importance by control how much relevance score on
each query term contribute to the final relevance score

(Q))

exp(w _
S_zgl (L) gi: g (CI) l:]-)"';M
= 1exp(wg )

— Input:
« Term vector
* Inverse document frequency

Matching Score

Score Aggregation

g1 92 U3

qa 0O // Term Gating
Network
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Experimental Settings:

 Dataset:
— Robust04: news collection
— ClueWeb09-Cat-B: Web collection

« Evaluation Methodology:
— 5-fold cross validation
— Tuned towards MAP
— Evaluated by MAP, nDCG@20, P@20

Robust04 ClueWeb09-Cat-B
Vocabulary 0.6M 38M
Document Count 0.5M 34M
Collection Length 252M 26B
Query Count 250 150

The ClueWeb-09-Cat-B collection has been filtered to the set of documents in the 60th percentile of spam scores.



J RUTGERS - 1T % £ 2 () UMASS

AMHERST

Retrieval Performance on Robust-04

Topic Titles Topic Descriptions
Model Type Model Name
MAP nDCG@20 P@20 MAP nDCG@20 P@20
. . . . . 334
Traditonal Retrioval QL 0.253 0.415 0.369 0.246 0.391 0.33
Baselines BM25 0.255 0.418 0.370 0.241 0.399 0.337
DSSMp 0.095— 0.201— 0.171— 0.078— 0.169— 0.145—
Representation-Focused CDSSM, 0.067— 0.146— 0.125— 0.050— 0.113— 0.093—
Matching Baselines
ARC-I 0.041— 0.066— 0.065— 0.030— 0.047— 0.045—
ARC-I| 0.067— 0.147— 0.128— 0.042— 0.086— 0.074—
nteraction-Focused MP o 0.169— 0.319— 0.281— 0.067— 0.142— 0.118—
Matching Baselines MPcos 0.189— 0.330— 0.290— 0.094— 0.190— 0.162—
MPpor 0.083— 0.159— 0.155— 0.047— 0.104— 0.092—
DRMMcyixry 0.253 0.407 0.357 0.247 0.404 0.341
DRMMyixry 0.160— 0.293— 0.258— 0.132— 0.217— 0.186—
DRMM, cpixry 0.268+ 0.423 0.381 0.265+ 0.423+ 0.360+
Our Approach
DRMMchxine 0.259 0.412 0.362 0.255 0.410+ 0.344
DRMMyixi0F 0.187— 0.312— 0.282— 0.145— 0.243— 0.199—
DRMM, crixipe 0.279+ 0.431+ 0.382+ 0.275+ 0.437+ 0.371+
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Retrieval Performance on ClueWeb-09-Cat-B

Topic Titles Topic Descriptions
Model Type Model Name

MAP nDCG@20 P@20 MAP nDCG@20 P@20

Traditional Retrieval QL 0.100 0.224 0.328 0.075 0.183 0.234
Baselines BM25 0.101 0.225 0.326 0.080 0.196 0.255+
DSSM¢ 0.054— 0.132— 0.185— 0.046— 0.119— 0.143—
DSSMp 0.039— 0.099— 0.131— 0.034— 0.078— 0.103—
Representation-Focused CDSSM; 0.064— 0.253— 0.214— 0.055— 0.139— 0.171—

Matching Baselines

CDSSMp 0.054— 0.134— 0.177— 0.049— 0.125— 0.160—
ARC-I 0.024— 0.073— 0.089— 0.017— 0.036— 0.051—
ARC-II 0.033— 0.087— 0.123— 0.024— 0.056— 0.075—
Interaction-Focused Matching MPnp 0.056— 0.139— 0.208— 0.043— 0.118— 0.158—
Baselines MPcos 0.066— 0.158— 0.222— 0.057— 0.140— 0.171—
MPpot 0.044— 0.109— 0.158— 0.033— 0.073— 0.102—

DRMMcpxtv 0.103 0.245 0.347 0.072 0.188 0.253
DRMMpyixrv 0.065— 0.151— 0.213— 0.031— 0.075— 0.100—

DRMM, chxrv 0.111+ 0.250+ 0.361+ 0.083 0.213 0.275

Our Approach

DRMMchyine 0.104 0.252+ 0.354+ 0.077 0.204 0.267

DRMMLCHX|DF 0.113"‘ 0.258"' 0-365"' 0.087"' 0-235"' 0-310"'
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Retrieval Performance

Topic Titles Topic Descriptions
Model Type Model Name MAP nDCG@2 | P@20 MAP nDCG@2 | P@20
0 0
DRMMchxry 0.253 0.407 0.357 0.247 0.404 0.341
DRMMyhxry 0.160 0.293 0.258 0.132 0.217 0.186
DRMM, chxtv 0.268 0.423 0.381 0.265 0.423 0.360
Our Approach DRMMcuxor ~ 0.259 0.412 0.362 0.255 0.410 0.344
DRMMyhxior 0.187 0.312 0.282 0.145 0.243 0.199
DRMM, chxior 0.279 0.431 0.382 0.275 0.437 0.371

« LCH-based histogram > CH-based histogram > NH-based histogram
— CH-based > NH-based: Document length information is important in ad-hoc retrieval
— LCH-based best: input signals with reduced range, and non-linear transformation useful for

learning multiplicative relationships

» |IDF-based Term Gating > Term vector-based Gating

— Term vectors do not contain sufficient information

— Model using term vectors introduces too many parameters to be learned sufficiently
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Leverage structured knowledge

« Explainable Product Search with Knowledge Base Embedding

GRAPH

\ @ o °
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® ® KNOWLEDGE ‘
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Knowledge Base Embedding

« Reasoning is a form of explanation

« Reasoning using hard-rules over knowledge graph is
inefficient and difficult to generalize

« Knowledge graph embedding makes it easier to calculate the
similarity between any pair of entity

Miami transk: translation-based embedding

h+£2=~t d(h+¢,t)

? Mom
/} Minimize the hinge-loss to learn entity and relation

Jane Sopn embeddings
_ 3 ) ,
i —5° Emi DL Y [v+dh+2,t)—dh +2,t)],

(h,Et)ES (W L, 2)ES], ,,
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User-Product Knowledge Graph

Q

Include both user interactions on products, and our
knowledge about the products

_________________________________________________

Write

{> Searché&Purchase

| |

| |

| |

: | Lighting :

, .

“high-resolution” R Ip;:/ i —-4> also bought
o 9 | SmartPhone !
___________________ I s ! '

|
|

.(_/_}'?_._ ________ ==~ Also viewed

T T L T N T T

| Users . ' “ iPhone ! :and : —> Bought_together
! . b ' ' -
: Bob /| i : { : E o Apple : Brand
| . q '
: ________ i\l-tc-e _______ : :_ iy ‘_’i’_‘e_@ o E V- ?-C_o?glf ! ——{> Category
L= ) logP(ilu,v) + ) logP(ylx,r) v = £(q) = f({walwa € q})
(u,v,i)€Dy. v. 1) (x,7,Y)ES(x,r.y) Z w
. w,€q q
- Z loga((u +f(q))-i) +k-Byp, [logo’(—(u +f(q))-i )] f(q) = tanh(W - ——llql + b)

(u,v,i)€ED(y, . 1)

+ Z log a((x + r)-y) +k-By.p, [loga(—(x + r)-y')]

(x,7,Y)€S(x,r,y)
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Generating Search Results

« Given user embedding u, query embedding f(q), and
candidate item embedding i, rank i's by similarity between
u+f(q) and |
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Generating Search Explanations

* Finding path on the knowledge graph

Write -« Also bought

Words “warm"”
Boots + Write
(Dress+Also bought+Write)

“fashion”
Alice + Write Dress + Nrite
Alice ® /V'Boots
./' Dress + Also bought
Users Dress Items

« “we retrieve this dress for Alice because she often writes
about fashion in her reviews and fashion is frequently used to
describe the dress by other users”
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Amazon Product Datasets

Electronics Kindle Store CDs & Vinyl Cell Phones & Accessories

Corpus

Number of reviews 1,689,188 982,618 1,097,591 194,439
Number of users 192,403 68,223 75,258 27,879
Number of items 63,001 61,934 64,443 10,429
Number of brands 3,525 1 1,414 955
Number of categories 983 2,523 770 206
Relationships

Write per user 777.23+1748.6 1174.23+3682.39 1846.88+7667.51 500.01+979.78

Write per item 2373.62+5860.33 1293.47+1916.72 2156.83+4024.15 1336.64+2698.30
Also_bought per item 36.70+38.56 82.56+29.92 57.28+39.22 56.53+35.82
Also_viewed per item 4.36+9.44 0.16+1.66 0.27+1.86 1.24+4.29
Bought_together per item 0.59+0.72 0.00+0.04 0.68+0.80 0.81+0.77

Brand per item 0.47+0.50 0.00£0.00 0.21+0.41 0.52+0.50

Category per item 4.39+0.95 9.85+2.61 7.25+3.13 3.49+1.08
Train/Test

Number of reviews 1,275,432/413,756 720,006/262,612 804,090/293,501 150,048/44,391

904/85 3313/1290 534/160 134/31

Number of queries
Number of user-query pairs
Relevant items per pair

1,204,928/5,505
1.12+0.48/1.01+0.09

1,490,349/232,668
1.87+3.30/1.48+1.94

1,287,214/45,490
2.57+6.59/1.30+1.19

114,177/665
1.52+1.13/1.00£0.05
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Experimental setup

« We adopt the 3-step approach (Van Gysel et al. 2016) to
construct the query
— Extract the multi-level category information of item a purchased item vj

— Concatenate the terms as a topic string
— Remove stopwords and duplicate words

» Baselines:
— Query likelihood (QL)
— BM25
— LambdaMART
— Latent Space Embedding (LSE) (Van Gysel et al. 2016)
— Hierarchical Embedding Model (Ai et al. 2017)
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Search Performance

« Better than baselines (query likelihood, Latent Semantic Entity
model (LSE), Hierarchical Embedding Model (HEM)

« Using more relation types (i.e., more knowledge) is better

Electronics Kindle Store CDs & Vinyl Cell Phones & Accessories
Model MAP |[MRR [NDCG |[[MAP |[MRR |NDCG Model MAP MRR  |NDCG |MAP | MRR NDCG
QL 0.289 0.289 0.316 0.011 0.012 0.013 QL 0.009 0.011 0.010 0.081 0.081 0.092
BM25 0.283 0.280 0.304 0.021 0.013 0.014 BM25 0.027 0.018 0.016 0.083 0.081 0.115
LambdaMART || 0.180 0.181 0.237 0.028 0.029 0.018 LambdaMART || 0.054"" | 0.057°* | 0.051"* || 0.121 0.121 0.148
LSE 0.233 0.234 0.239 0.006 0.007 0.007 LSE 0.018 0.022 0.020 0.098 0.098 0.084
HEM 0308 [ 0309 [0.329% ][ 0.029 0.035° | 0.033" HEM 0.034 0.040 0.040 0.124"* [ o0.124"" [0.153"*
DREMNorfera || 0.291 0.291 0.319 0.036" | 0.044" | 0.042°  DREMnoprera || 0.034 0.041 0.040 0.107 0.107 0.127
DREM 45 0.283 0.283 0.312 0.043** | 0.052*" | 0.050** DREM 45 0.046" 0.054* 0.054* 0.098 0.098 0.120
DREMay [ 0318 [0.319°" [0.349"" [ 0.035° [0.043° | 0.041° DREM4y || 0.034 0.041 0.040 0.095 0.096 0.096
DREMpgr 0.320** 0.321** 0.346"" 0.037" 0.045" 0.042" DREMpr 0.037 0.044" 0.042" 0.089 0.089 0.096
DREMp,q | 0.314"% [ 0315 | 0340 [ 0.037° [0.044° | 0.043° DREMpng || 0.035 0.041 0.040 0.134"% | 0.134"* | 0.152*
DREMcq; || 0.299° | 0.300% [0.360°" [/ 0.048°% |0.056" |0.056" DREMcar || 0.059"* [ 0.068°* [0.070* [[ 0.193"* [0.193"* [0.229"*

DREM,; [ 03667 [ 0.367°*" [ 0.408"* [ 0.057°*" [ 0.067°*" [ 0.067°*7  DREM,; [ 0.074°*" | 0.084°*" | 0.086"*" || 0.249°*" | 0.249°*" | 0.282"*"
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' Words : ; Jawbone 2596% Brand | Write
' 1 i Anker 0.002% "
i i ' ——# Search&Purchase
. bass 0.192% sleep 0010% | | : o e foaN :
powerpak | 0.135% jawbone | 0.009% : ; P 4 "":' L : » Brand
astro 0.102% . app 0.007% lpememecccccccccanann, " “'L N — . gg:: :
: earbud 0.089% fitbit 0.007% '\ ltems e : = T | =——# Category
! armband 0.055% flex 0.006% H : o ‘“ - 0- 017% '
4 capacity 0.042% waterproof  0.006% :: i Pebble Technology Corg 0.379% p 01 '
; " i Phone Halo 0.114% m gg: |
' " ' 2T 0.102% A - '
: ' BOOGOGV3 ' Hercules 0.002% i
: ' Coolstream 0.095% . '
' Up 24 Activity Tracker N Logitech 0.081% P Wireless Extenders 0.002% '
! h by Jawbone 4 - 3 !
' | portable = 0.002% pebble 0.186% H B B . | e e FReEma———
handy  0.002% watch 0.178% 1, T N B e e T E T | |
' ] / } | Fitness Trackers 3.288% '
°":‘ﬂ - gg;: © w"‘:m == gg;:: O " > S S — ! Medical Supplies & Equipment 2.896% Ca'ego,y H
' : NRV o'oozx :ma e 0‘020’6 : : p Activity, Health & Wellness Monitors  2.836% :
' poc ' PP ‘ i nd Heart Rate Monitors 2.591% '
' output 0.002% notification ~ 0.013% FHOI0E . Health & Personal Care 2.302% H
RO v CNBEE, e TR, v 5l _BO0GGGQHPO _| 0.020% P Sports & Outdoors 1.487% i
[ e e e e e T i Ty Ll . 1| "Bo0SWEBS6! | 0.023% i — !
| Users 11| [Bo0ISHDEPC | 0.021% .\“ Sports & Outdoors 1560% | |
i 11| BoOBKEQBIO | 0.014% |  gaopkeg|o @) Smart Watches & Accessories 1444 @ | Cel Phone Accessories 0.740% | |
' " '
' A17VIXLACWTQEG 11| BOOGOGV314 | 0.004% || oovsie Smartwatch | Jewelry: International Shipping Available  8.587% Clothing, Shoes & Jewelry 0.468% | !
: " by Pebble Technology! | Clothing, Shoes & Jewelry 6.777% Audio Adapters 0.390% | |
e e e e N R e S e e e S s e e S LR R Activity, Health & Wellness Monitors 0.042% Jewelry: International Shipping Available  0.343% | !
i Heart Rate Monitors 0.033% Health & Personal Care 0.080% | !
Query: “sports outdoors accessory electronics gadget fitness track” ) |Liesih A PumsesiCore Sou% — 1
e - i . . . -o
e u+SP+B—Pebble Technology«i,+B (5.81%): e u+SP+C—Health&Personal Care«i;+C (0.184%):

“Based on your profile and query, you may like to see some-  “Based on your profile and query, you may like to see some-
things by Pebble Technology, and Pebble Smartwatch by  things in Health&Personal Care, and Up 24 Activity Tracker
Pebble Technology is a top product of this brand”” by Jawbone is a top product in this category.”

. u+57’+6—>Clothing, Shoes, Jewelry«i, +C (3.17%): ® u+SP+C—-Sports&Outdoors«i;+C (2.32%):
“Based on your profile and query, you may like to see some-  “Based on your profile and query, you may like to see some-
things in Clothing, Shoes, Jewelry, and Pebble Smartwatch  things in Sports&QOutdoors, and Up 24 Activity Tracker by
by Pebble Technology is a top product in this category.” Jawbone is a top product in this category”
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Post-hoc explanation methods for search

Black-box
Al System

Post-hoc explanation

4
— Construct a second model to @_,' — 9
interpret the trained model \

Explanation

Input Data

— Usually model agnostic (i.e. .
works for any trained model) 7

Explanation Sub-system

« EXS: Explainable Search Using Local Model Agnostic
Interpretability (J.Singh and A.Anand 2019)

* Primary goal: aid users in answering the following questions:
— Why is this document relevant to the query?
— Why is this document ranked higher than the other?
— What is the intent of the query according to the ranker?

« Basic ldea: Adapt LIME to search task
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LIME (Ribeiro et al. 20106)

« Local Interpretable Model-agnostic Explanations

« For a trained model f and an instance x, the explanation by
LIME is obtained by:
§(x) = argmingecL(f, g, mx) + Q(9)
- G: aclass of interpretable models (e.g. sparse linear models)

- m,(z): a proximity measure between an instance z to x, so as to define
D(xz) ))

- L(f, g, m,): a measure of how unfaithful g is in approximating f in the
: : N2
locality defined by 7, (e.9. L(f, 9, 70x) = X, e, T (2)(f(2) — g(z"))")

locality around x (e.g. m,.(z) = exp(—

I
/
I

'®
4o
H @
;| ® o®

~

!
/

(Ribeiro et al. 2016)
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Adapt LIME to search task

« For atrained binary model B and a doc d, train a simple linear
SVM M, on a feature space of words that minimize:
L(B,Mg,m,)
- L(B,M,,my): difference between predictions of M; and B for all
d € my
- d' € m, is created by removing random words from random
positions in d
« How to convert a ranker R into a classifier B:
— Estimate P(X = relevant |q,d’, R)
— Top-k Binary: P(X = relevant |q,d',R) = 1if R(q,d") > R(q, d},)
R(q,d1)-R(q.d")
R(q.,d1)
rank(d")
K

— Score based: P(X = relevant |q,d",R) = 1 —

— Rank based: P(X = relevant |q,d",R) =1 —
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Visualizing Explanations

« Why is this document d relevant to the query?

— Show the sign and magnitude of learned coefficients of M; along with
the associated words

EXS MM ~ Binary Score  Rank Rail Strikes X t AP -
@ APB890710-0178 relevance:5.1078773

e re—

unvest ——|

union
AP890713-0014 relevance:5.101732 -

jimmy =
Despite Commuter Misery, Strikes Win Some Sympathy Eds: Also in A
Thursday AMs report. By MAUREEN JOHNSON Associated Press Writer
LONDON (AP) Britons are witnessing something that has become unusual power -
in the past decade of union-curbing Thatcherism: a striking blue-collar of -
union is enjoying a measure of public sympathy. Wednesday saw the again -
fourth one-da

state I
Explain

AP890621-0158 relevance:5.0865865

Britons Cycle, Walk or Stay at Home in Rail, Bus Strike Eds: SUBS 17th
graf, "It was with 1 graf to ADD ridership figures. LaserPhotos
LON4,17 By MARCUS ELIASON Associated Press Writer LONDON (AP)

Figure 1: The EXS User Interface. The top bar of the application houses the retrieval model selector (A), Score-to-Probability converter for LIME (B), search box (C)
and the Explain Intent button in that order. To the right is the rank depth input box (E) and the corpus selector (D). The left pane shows the search results for the
query 'Rail Strikes’ according to DRMM. The right pane shows the output of clicking on the ’Explain’ button corresponding to the top result. The bar chart on the
right shows the words in the document that make it relevant and irrelevant according to DRMM. The green bar indicates the strength of a word for the relevant
class and red for the irrelevant class. EXS can be found at http:/bit.ly/exs-search

(J.Singh and A.Anand 2019)
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Visualizing Explanations

 Why is this document d, ranked higher than another dz?

— Set k = rank(dg) and dy, = dg. M, , now tells us which words in d, are
strong indictors when compared to the threshold set by dj

— Only show the positive words

strike
strikes

rail

Figure 3: Explanation for AP890710-0178 vs AP890713-0045 for the query
‘Rail Strikes’ when using DRMM

(J.Singh and A.Anand 2019)
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Visualizing Explanations

« What is the intent of the query according to the ranker?
— Aggregating m, for all d € D

— add the coefficients of each word w € m, for all m; and show top words
and coefficients to users

strike
strikes
transport
rail
striker
rails
union
also

for

full

of

again

Figure 2: Intent explanation for the query ’Rail Strikes’ when using DRMM
to rank documents from a news collection.

(J.Singh and A.Anand 2019)
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Axiomatic analysis of search models

Seek a set of desirable properties of retrieval models as
formal constraints (or axioms)

Analyze and diagnose retrieval models with formal constraints

Provide theoretical guidance on how to optimize a retrieval
model and how to design novel retrieval models



gP RUTGERS - 11 % £ 7 (i) UMASS

s AMHERST

Axiomatic analysis of search models

« A Formal Study of Information Retrieval Heuristics (Fang et al.
2004)

— Define 7 formal constraints on retrieval models

— Analytically examine three representative retrieval models with these
constraints
» Pivoted model, Okapi Mode, Dirichlet Prior Method
— Empirically show that the satisfaction of the constraints is correlated
with good ranking performance

« The violation of the constraints often indicates non-optimality of the retrieval
model

« Constraints analysis reveals optimal ranges of parameters
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Seven Relevance Constraints

Constraints Intuitions

TFCA1 To favor a document with more occurrences of a query term

TFC2 To ensure that the amount of increase in score due to adding a
query term repeatedly must decrease as more terms are added

TFC3 To favor a document matching more distinct query terms

TDC To penalize the words popular in the collection and assign
higher weights to discriminative terms

LNCA1 To penalize a long document (assuming equal TF)

LNC2, To avoid over-penalizing a long document

TF-LNC

TF-LNC To regulate the interaction of TF and document length

(Fang et al. 2004)(Fang et al. 2011)
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Term Frequency Constraints

« TFC1

— Intuition: give a higher score to a document with more occurrences of a
query term

— Let Q be a query and D be a document
— IfgeQandt¢Q,thenS(Q,DU{q}) >S(Q,Du({t}

q
Q: N
D: [
q
D,: _t
D,; [ |

S(O,D)>S(0,D,) (Fang and Zhai, 2014)
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Term Frequency Constraints

« TFC2

— Intuition: require that the amount of increase in the score due to adding
a query term must decrease as we add more terms.

— Let Q be a query with only one term q
— Let D be a document,

then S(Q,D U {q}) —S(@Q,D) > S(Q,DuU{qtuiq}) —S(Q DU{g})

D2 _ S(DZ’Q)_S(DUQ)>S(D39Q)_S(D2’Q)

(Fang and Zhai, 2014)
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Term Frequency Constraints

« TFC3

— Intuition: favor a document with more distinct query terms
— Let g be a query and w,, w, be two query terms.

Assume idf (w,) = idf (w,) and |d,| = |d,|

if c(wy,dy) = c(wy,dy) + c(w,,dl1)

and c(w,,d,) =0,c(wy,d;) #0,c(w,,d;) #0

then S(q,d,) > S(q,d,) WoW,

q: Hm
c(w,d,) c(w,,d,)

d;: R et g
d,: T

Y
c(w,,d,)

S ,q)>S(d,,q) (Fang and Zhai, 2014)
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Term Discrimination Constraint

« TDC

— Intuition: to penalize the words popular in the collection and assign
higher weights to discriminative terms

— Let Q = {q41,q2} Assume |D4| = |D,| and c(q1, D1) + c(q2, D1) =

¢(q1, D2) + ¢(qz Dy). If idf (q1) = idf (q2) and c(q1, D1) = c(q1, D7), we
have S(q,D,) = S(q, D7)



UMASS

N7 5 4
28 RUTGERS 1T # 42 (§y) UMASS

Length Normalization Constraints

« LNC1

— Intuition: penalize long documents

— Let Q be a query and D be a document.

— If t is a non-query term, then

S Du{t}) <S@,D)
« LNC2

— Intuition: avoid over-penalizing long
documents

— Let Q be a query and D be a document.

— IfDnQ # ¢, and D, is constructed by
concatenating D with itself k times,
then S(Q, D) = S(Q, D)

Q: Hl

D: I,

D’- [
S(Q,D")<S(Q,D)

Q: N

D:

D,: ;
S(Q,D,)=S8(0,D)
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Analyze Neural IR Models with Formal Constraints

 For traditional IR models, the satisfaction of the constraints is
correlated with good empirical performance (Fang et al. 2004)

« The formal constraints should also be useful in analyzing and
optimizing the neural IR models

« Some recent work on this direction:

— An Axiomatic Approach to Diagnosing Neural IR Models (Rennnings et
al. 2019)

— An Axiomatic Approach to Regularizing Neural Ranking Models (Rosset
et al. 2019)

— Teach Machine How to Read: Reading Behavior Inspired Relevance
Estimation (Li et al. 2019)
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An Axiomatic Approach to Diagnosing Neural
IR Models (Rennnings et al. 2019)

« Create diagnostic datasets based on the relevance
constraints including:
— TFC1, TFC2, M-TDC, LNC2
— With necessary extensions and relaxations

— By sampling queries and documents pairs/triplets that match the
condition of the axioms (do not require relevance labels!)

What is Granite? what is granit including appended documents
Y
w
Oridinal filtering & P d create & add Extended
rgina preprocessmg—> reprocesse artificial data Dataset
Dataset Dataset (including artificial
data)
P T
OR T
Asdom extension & Ao Chefﬁ:‘ﬁﬁg“;::'”‘_. Diagnostic
relaxation Dataset
v
q={w;,w)} q={wi,ws,..., Wigl } Q1317, D283-0, D283-14, D283-16

Fig. 1: Overview of the diagnostic dataset creation pipeline. In italics, we show
an example for the TFC2 axiom as extracted from question 1317 on passages from
Wikipedia document 283 in the WikiPassageQA dataset, and refer to appended
documents as an example of artificial data (for LNC2).
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An Axiomatic Approach to Diagnosing Neural
IR Models (Rennnings et al. 2019)

« Use the diagnostic dataset to test whether neural IR models’
output is consistent with the axioms

Table 2: Overview of models’ retrieval effectiveness and fraction of fulfilled axiom

/9/2/ . . . . . ye .
1/2/3/4 denote statistically significant improvements (Wilcoxon signed

instances.

rank test with p < 0.05) in retrieval effectiveness.
Retrieval effectiveness Performance per axiom

MAP MRR pPa@s | TFC1 TFC2 M-TDC LNC2'**" LNC2""
' BM25 0.5234 0.60** 0.18° 0.73 0.98 1.00 0.80 0.80
“ QL 0.54*4 0.62!** 0.19° 0.87 0.63 0.94 0.68  0.68
3 Duet 0.25 0.29 0.10 0.69 0.56 0.48 0.19 047
' MatchPyramid 0.44° 0.51° 0.18° 0.79 0.58 0.63 0.00 0.19
> DRMM 0.551%:34 0641234 0.20%34| 0.84 0.60 0.76 0.05 0.12
¢ aNMM 0.57"*%% 0.66"*%* 0.21"*%1/0.85 0.56 0.69 0.38 0.47

« Find a positive but not significant correlation (0.44) between
MAP and the average fraction of fulfilled axiom instances
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An Axiomatic Appl;oach to Regularizing Neural
Ranking Models (Rosset et al. 2019)

« Use IR axioms to augment the the labeled data for training
neural ranking models
— For each document d and constraint A;, generate a perturbed document

d® to regularize the pairwise hinge loss function (i.e. increase the loss
if the ranking model fails to satisfy constraint A; on the pair d and d®

Axiom Perturbation Expected result

TFC1-A  Sample a query term from query g and insert d® >, d
it at a random position in d

TFC1-D  Sample a query term from query g and delete d®W <, d

itind

TFC3 Sample a query term not present in d, and d® >, d
insert itin d.

LNC Sample k terms and insert them at random d®W <, d

positions in d
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An Axiomatic App”roach to Regularizing Neural

Ranking Models (Rosset et al. 2019)

« Experiment on MS-MARCO ranking dataset
— Neural ranking model: CKNRM (Dai et al. 2018)

— Axiomatic Regularization can improve the ranking performance,
especially when the size of training data is limited

MRR on Different Data Sizes

..... Y A Ablation on 10k Queries
i . MAP MRR
s [ | R~ S—— CKNRM 15.13 15.36
- 1 et +TFC1-A 1933 19.56
1 i +TFC1-D 18.16 18.38
4 + TFC3 19.05 19.28
1 +LNC 1142 1147
+ All Axioms 19.70 19.95

N cECissee Table 2: An add-one-in ablation study of each of the ax-

iomatic losses; the last row shows all axioms.

Figure 1: MRR results of training CKNRM and its axiomatic
variant on datasets with 100, 1k, 10k, 100k, and all MS-
MARCO queries on the dev set. Each point represents the
ensemble of four independently trained models.
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Teach Machine How to Read: Reading Behavior
Inspired Relevance Estimation (Li et al. 2019)

« Retrieval models try to approximate users’ relevance
judgment of a query-doc pair
* By investigating how the user makes relevance judgment, we

may be able to find some human-inspired heuristic constraints
that are useful for improving retrieval models
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How does a human make relevance judgment?

« Conduct an eye-tracking study to log users’ eye-fixations
during relevance judgment task (Li et al. 2018)

— A two-stage relevance judgment process
« Stage 1: preliminary relevance judgment
« Stage 2: reading with preliminary relevance judgment

Relevant case ) Irrelevant case

Potential Potential
relevant irrelev
1.4 Post-task questionnaires
I
LS Relevant Text Annotation
Knowled, Relevanc
cquisitl heckin
' oha < s
0 o v o v e e B o S v L e s, S 4, G % S S0 Sl S e o o i Behavior bias Behavior bis
(Position, content
sarch type . Obtain knowledge Not relevant (Position, content
st Ype, query) search type, query)

Figure 2: User study procedure. The system interface is translated from Chinese.
Final relevance decision
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Heuristic Constraints from Reading Behavior

« Define six reading heuristic

Heuristic

Description

Implication for retrieval models

a Sequential reading

Reading direction is from top to bottom

The presented order of the content may affect rele-
vance

b | Vertical decaying attention

Reading attention is decaying vertically

Retrieval model should assign more weights to the
text at the beginning of documents

Reading attention is higher in the contexts
around query terms

Retrieval models should follow IR heuristics [7] and
capture the interactions between query and document

Reading behavior is influenced by the rele-
vance perception from previously read text

The local relevance of the text should also depend on
its surrounding context

Users will skip some seemingly irrelevant
text during relevance judgement

Retrieval models should ignore the text that has no
or little influence on relevance

c Query centric guidance
d Context-aware reading
e Selective attention
f Early stop reading

Users will stop reading once the read text is
enough to make relevance judgement

Retrieval models should be able to estimate the rele-
vance without processing the whole document

* Analyze whether existing
neural IR models satisfy
these heuristics

Models a b ¢ d e f
ARC-I

ARC-II
DRMM
Match
Pyramid
KNRM
PACRR
DeepRank
HiNT v

2 2 2 2 2 2 2
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Incorporating Reading Heuristics

* Design a novel Reading Inspired Model (RIM)
— Satisfy the proposed reading heuristics

— Use reinforcement learning method to incorporate the selective attention
and early stop reading heuristics into a neural retrieval model

Relevance
O O Q00 O Sentence t
Local matching layer — X_ embedding ( MLP ]
t
[ k-max pooling
Vertucal decaying
X
oy \ % coeff cient
Maxpooling
- RN N
05(0;) reading
1. Select 1. Skip 1. Select
Matching ’ 2. Continue 2. Continue 2. Stop
Tensor . /

Agent 1 Agent 2

(@000] (000

Sentence embedding Position embedding




% UMASS
AMHERST

Incorporating Reading Heuristics

* Incorporating the reading heuristic constraints do improve the
ranking performance

Test-SAME (PSCM) Test-DIFF (UBM)
NDCG@1 NDCG@3 NDCG@5 NDCG@10 | NDCG@1 NDCG@3 NDCG@5 NDCG@10
BM25 0.7048" 0.7202* 0.7414* 0.7967* 0.6127* 0.6509* 0.6819* 0.7429*
ARC-I 0.7583" 0.7647 0.7804 0.8286 0.6489" 0.6869 0.7142 0.7677
ARC-II 0.7239* 0.7347* 0.7519* 0.8061" 0.6303" 0.6667* 0.6948" 0.7523*
DRMM 0.6958" 0.7141" 0.7352* 0.7923* 0.6024" 0.6471* 0.6790" 0.7404"
MatchPyramid 0.6851" 0.7028" 0.7248" 0.7857* 0.5938 0.6386 0.6716" 0.7366"
KNRM 0.6997* 0.7121* 0.7336" 0.7917* 0.6048 0.6465" 0.6775" 0.7400*
PACRR 0.7072* 0.7219* 0.7411* 0.7981" 0.6172" 0.6557" 0.6860" 0.7465"
DeepRank 0.7058* 0.7227* 0.7452* 0.8059" 0.6099" 0.6566" 0.6891" 0.7540"
HiNT 0.7550* 0.7592* 0.7751* 0.8264 0.6564 0.6895 0.7072* 0.7603*
RIM 0.7746 0.7705 0.7830 0.8304 0.6602 0.6918 0.7170 0.7689
NTCIR-13 NTCIR-14
NDCG@1 NDCG@3 NDCG@5 NDCG@10 | NDCG@1 NDCG@3 NDCG@5 NDCG@10
BM25 0.6099 0.6194 0.6253 0.6391 0.4324 0.4432 0.4383 0.4706
ARC-I 0.5933 0.6153 0.6184 0.6222 0.4726 0.4690 0.4643 0.4814
ARC-II 0.6466 0.6649 0.6523 0.6426 0.4556 0.4369 0.4405 0.4700
DRMM 0.6866 0.6490 0.6487 0.6378 0.4345 0.4651 0.4657 0.4847
MatchPyramid 0.6866 0.6507 0.6458 0.6436 0.3586 0.3838 0.3998 0.4378
KNRM 0.6700 0.6564 0.6557 0.6591 0.4367 0.4252 0.446 0.4739
PACRR 0.6700 0.6661 0.6659 0.6620 0.4219 0.4483 0.4541 0.4689
DeepRank 0.6750 0.6606 0.6617 0.6648 0.4894 0.4588 0.4640 0.4793
HIiNT 0.6566 0.6599 0.6548 0.6449 0.4746 0.4643 0.4617 0.4898
RIM 0.7050 0.6797 0.6749 0.6570 0.4979 0.4887 0.4911 0.5021
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Outline

« Background and motivation
— What is explainable search?
— Why do we need explainable search?

« Existing work on explainable search

— How can we make search models more explainable?
Building Interpretable search models

Using structured knowledge

Post-hoc explanation methods for search

Axiomatic analysis of search models

 Wrap up
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Wrap up

« What is explainable search about?
— In narrow sense:
* How to build an interpretable search model

— In broad sense:
* Re-examine the search problem from the explainable Al/ML perspective

« Why do we need explainable search?

— For search users, to build better mental models for search

— For system designers, to better deal with more powerful but more
complex search systems
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Wrap up

 How can we make search models more explainable?

— We introduce some recent work which covers two dimensions of
interpretability

Global Intrinsic vs
vs Local Post-hoc

Building Interpretable search models Global Intrinsic
(Guo et al. 2016)

Using structured knowledge Local Intrinsic
(Explainable Product Search with Knowledge Base Embedding)

Post-hoc explanation methods for search Local Post-hoc
(J.Singh and A.Anand 2019)

Axiomatic analysis of search models Global Post-hoc
(Fang et al. 2004) (Rennnings et al. 2019) (Rosset et al. 2019) (Li et al.
2019)
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