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Abstract

Many e-commerce systems allow users to express
their opinions towards products through user re-
views systems. The user generated reviews not
only help other users to gain a more insightful view
of the products, but also help online businesses to
make targeted improvements on the products or ser-
vices. Besides, they compose the key component of
various personalized recommender systems. How-
ever, the existence of spam user accounts in the re-
view systems introduce unfavourable disturbances
into personalized recommendation by promoting
or degrading targeted items intentionally through
fraudulent reviews. Previous shilling attack detec-
tion algorithms usually deal with a specific kind of
attacking strategy, and are exhausted to handle with
the continuously emerging new cheating methods.
In this work, we propose to conduct shilling attack
detection for more informed recommendation by
fraudulent action propagation on the reviews them-
selves, without caring about the specific underly-
ing cheating strategy, which allows us a unified and
flexible framework to detect the spam users.

1 Introduction
With the ability to help recommend items of potential inter-
ests to users, and thus to benefit both online users and busi-
nesses, Personalized Recommender Systems (PRS) [Ricci et
al., 2011] have become an essential part of various online
applications, including e-commerce, social networks, video
websites, and news portals. The widely adopted Collabora-
tive Filtering (CF) [Su and Khoshgoftaar, 2009] approaches
has the advantage of making recommendations with the wis-
dom of crowds, which contributed to the great success of per-
sonalized recommendation in practical systems.

However, the CF-based approaches inherently relies on the
historical behaviours of a user as well as those of the oth-
ers for model estimation and personalized recommendation,
which leaves space for attackers to affect the recommenda-
tion results received by normal users through attack profile
injection into a system [Gunes et al., 2012]. For example, an
attacker who aims at promoting a targeted item may register a

sufficient number of fake accounts in the system and rate rel-
atively higher scores towards the targeted item, or relatively
lower scores vise versa. According to the experimental obser-
vations in practical systems, a 3% fake profile attack would
results in a prediction shift of around 1.5 points on a five-
point scale, which poses a severe problem on the usability of
recommender systems [Jannach et al., 2010].

To reconstruct a pure land for recommendation algorithms,
researchers have conducted various studies to scrutinize dif-
ferent shilling attack strategies, profile injection attack types,
attack detection schemes, robust algorithms to overcome such
attacks, and evaluate them with respect to accuracy, cost, ben-
efit, and overall performance [Gunes et al., 2012].

However, previous methods usually have to examine the
details of an attack strategy so as to find ways out to extract
the injected profiles out of millions of normal ones. As a
result, each attack detection method can only tackle with a
limited kind of attack strategies, and their application are usu-
ally restricted to specific recommendation algorithms. With
the continuous emerging of new attack strategies, researchers
have been exhausted to construct new targeted detection al-
gorithms. The investigation on robust recommendation al-
gorithms [Mehta et al., 2007] partly alleviates the problem,
but the explicit detection of attack profiles remains an impor-
tant problem because personalized recommendation is not the
only application of shilling attack detection techniques.

In this work, we propose to conduct shilling attack detec-
tion in an eye for an eye manner without being bothered by
the details of the attack strategies. This is achieved by taking
advantage of the inherent motivation and goal of the attack-
ers, regardless of the specific attack method they used. To do
so, we construct the user to item bipartite graph (Figure 1(b))
from the user-item rating matrix (Figure 1(a)) according to
their relationship of equivalence introduced in [Zhang et al.,
2013a; 2013b], and develop a recursive bipartite propagation
approach based on the bipartite graph, so as to estimate the
probability of each user being a spam user account. Each
edge from a user to an item in the graph indicates the degree
that the user aims to manipulate the rating of the targeted item
intentionally.

This framework is based on the observation that, the ul-
timate goal of a spam user account will eventually lead its
way to affect the rating of the targeted items. As a result,
we only have to consider the final ratings that a user cast on
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(a) Rating Matrix (b) Bipartite Graph

Figure 1: An example of user-item rating dataset (matrix) and
the corresponding bipartite graph. Each of the edges in bi-
partite graph corresponds to a rating in the user-item rating
matrix, and the weight of each edge denotes the degree that
the corresponding rating is a spam rating to promote or de-
grade the corresponding item/product. Recursive propagation
is conducted on the graph to estimate the probability of each
user being a spam user account.

the targeted items, without being burdened by the various and
frequently changing attack strategies.

The main contributions of the paper can be summarized as
follows:
• We propose to conduct shilling attack detection in re-

view systems for personalized recommendation with a
unified framework, based on propagating the degree that
a user promotes or degrades a target item, without con-
sidering the specific attack strategy used.
• We develop an efficient algorithm for propagation and

prove the convergence of the propagation process.
• With extensive experiments on real-world Amazon

movie review datasets, we verify the effectiveness of our
proposed unified framework.

The rest of the paper will be organized as follows: In Sec-
tion 2, we review some of the related work, and present the
problem formalizations in Section 3. We introduce our uni-
fied shilling attack detection framework, the algorithms, as
well as the corresponding theoretical analysis in Section 4,
and report the extensive experimental results on real-world
datasets in Section 5. We finally conclude this work and point
out some of the future research directions in Section 6.

2 Related work
Online businesses employ Collaborative Filtering (CF) [Su
and Khoshgoftaar, 2009; Ricci et al., 2011] algorithms to pro-
vide personalized recommendations to their customers so as
to increase the sales and profits. And personalized recom-
mendation also benefits online users to discover things of po-
tential interests so as to get rid of the problem of information
overwhelm.

However, although the personalized recommender systems
are successful in e-commerce websites, they are vulnerable
to shilling attacks [Gunes et al., 2012]. On one hand, online
businesses utilize CF algorithms to enhance their competi-
tive edge over other businesses. On the other hand, malicious

users and/or competing vendors might insert shilling reviews
into the systems intentionally in such a way that they can af-
fect the predicted ratings, so as to promote the items that they
have an interest in, or to degrade the competing items.

Researchers proposed statistical analysis methods to detect
anomalies in databases caused by suspicious ratings. Statis-
tical anomaly detection [Bhaumik et al., 2006] is one such
approach relying on item average values, where outlier items
are determined based on statistical process. Similarly, [Hur-
ley et al., 2009] utilized Neyman-Pearson statistical detec-
tion theory in which a binary hypothesis testing is performed
to discriminate between genuine and attacker profiles. Be-
sides, [Zhang et al., 2006] propose a probabilistic approach
using SVD-based data reduction method, where a compacted
model of observed ratings (including real and biased ones) is
generated by maximizing the log-likelihood of all ratings.

Supervised classification techniques are also utilized in at-
tack detection schemes. [Burke et al., 2006a; 2006b] uti-
lize a classification approach for detecting malicious users
based on attributes derived from each individual profile.
These are called generic attributes in literature. Two of such
derived attributes are Rating Deviation from Mean Agree-
ment (RDMA) and Degree of Similarity with top neighbors
(DegSim) proposed by [Chirita et al., 2005] as a metric for
detecting malicious profiles. In addition to RDMA based at-
tributes, one more generic attribute is also proposed in [Burke
et al., 2006a], called Length Variance (LengthVar), which
measures how much the length of a given user profile varies
from the average length in the database, where length is the
number of ratings of a user.

Besides, clustering approach in attack detection is utilized
by [O’Mahony et al., 2003] as neighbourhood selection to
eliminate suspicious users. [Mehta, 2007] and [Mehta and
Nejdl, 2009] introduced a PLSA-based clustering method to
determine the spam users in recommendation generation pro-
cess instead of using traditional nearest neighbor methods.
[Bhaumik et al., 2011] applied an unsupervised clustering al-
gorithm based on several classification attributes for attack
detection relying on statistical characteristics of dataset and
accordingly produce user profiles relying on those attributes.

However, an important problem of current approaches is
the extensive efforts required to construct different attack de-
tection methods for different specific attack strategies, which
is time consuming. In this work, we attempt to avoid this ex-
pensive process by introducing a unified framework for spam
account detection, based on the final ratings of the users them-
selves, which relieves practical recommender systems from
the extensive work of continuously fighting against emerging
attack strategies.

3 Problem Formalization
Before presenting our framework, we introduce some defini-
tions that will be adopted in this work.

Definition 1 The rating dataset R is a set of triples
〈ui, pj , rij〉, where ui is a user, pj is a product/item, and rij
is the rating given by user ui towards product pj . Let U and
P denote the set of all users and products, respectively.
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Definition 2 The rating dataset R can be equivalently repre-
sented by its corresponding bipartite graph G = (U ,P, E),
where U and P are the same as above, and E is the set of
edges 〈ui, pj〉. An edge in G connects a user and a product,
which corresponds to a numerical rating made by the user
towards the product in the rating dataset R.

There exist two types of nodes in the graph, namely, the
user nodes and the product/item nodes. Each of the user or
item nodes is assigned a score P (ui) or P (pj), which denotes
the probability of a user being a spam user, or the probability
of a product being a spam product. Figure 1 gives an intu-
itional example of the rating dataset as a matrix, as well as its
corresponding bipartite graph.

Definition 3 The labeled seed spam user set Us ⊂ U is a
small set of users that are manually detected and labeled as
spam users. These users are used as the initial seed users that
drive the propagation process on a bipartite graph. We will
present this process and discuss the selection of seed users in
the following parts.

Given G = (U ,P, E) and a set of seed spam users Us,
the goal of our framework is to estimate the spam probability
P (ui) for each user ui ∈ U . After the propagation algorithm
terminates, each user and product will receive a score that
denotes its possibility of being spam.

4 The Framework
We propose a label propagation algorithm for the detection of
spam user accounts. Specifically, we calculate the spam prob-
ability P (ui) of a user ui by incorporating all of the spam
probability of its adjacent products, as well as the connec-
tions (edges) between the user and the corresponding prod-
ucts. Similarly we calculate the spam probability P (pj) for
each product pj by considering all its adjacent users. This
procedure is conducted back and forth and recursively. We
will formally describe this process in this section.

4.1 Construction of the Bipartite Graph
To construct the bipartite graph from a rating matrix, we need
to determine the weight of each edge connecting, for exam-
ple, a user ui and a product pj in the bipartite graph G. In this
work, we consider the rating count, user rating bias, product
rating bias, as well as the global rating bias to estimate the
edge weight wij :

wij = 1 +

∣∣∣∣rij − r̄i
r̄i

∣∣∣∣+

∣∣∣∣rij − r̄j
r̄j

∣∣∣∣+

∣∣∣∣rij − r̄

r̄

∣∣∣∣ (1)

In this formulation, the first additive component “1” is
adopted to stand for the count that a user rates towards an
item, where the intuition is that the spam user accounts usu-
ally tend to make a larger amount of ratings towards items
compared with normal users, in order to manipulate the rat-
ing of the targeted items. By taking into consideration the
number of ratings made during the propagation process on
the bipartite graph, we are able to put more potentials of be-
ing spam on those highly active accounts.

The remaining additive components represent the relative
biases of the rating against the average rating of the user, the

average rating of the product, and the global average. The
intuition here is that when a user attempts to rate a product
far beyond the previous averaged ratings of himself, or the
averaged rating of the product, or even the global averaged
rating, we tend to treat such a rating as more “intentional” to
manipulate the rating of a product [Gunes et al., 2012; Su and
Khoshgoftaar, 2009].

It is important to note that we can well incorporate other
available information, such as user profiles and item contents,
to construct more comprehensive edge weights for propaga-
tion, and our framework is flexible to integrate any weight
definition. However, as we will show in the experiments, such
a simple one as Eq.(1) based solely on ratings gives us com-
petitive performance in spam account detection.

4.2 Transition Probability
In order to propagate the spam probability between users and
products, we need to estimate the user to product transition
probability tuipj , as well as the product to user transition
probability tpjui based on the original bipartite graph. To
do so, we determine the transition probability for an edge in
the graph by calculating the percentage of weights adopted
by this edge against the total edge weight of a user/product,
namely:

tuipj
=

wij∑
j′:〈ui,pj′ 〉∈E

wij′
(2)

and,
tpjui

=
wij∑

i′:〈ui′ ,pj〉∈E wi′j
(3)

and tuipj
= tpjui

= 0 if these is no edge connecting the user
ui and product pj .

Suppose there exist m users and n products in the rat-
ing matrix (and also in the bipartite graph), we further de-
fine the user to product transition probability matrix Tup =
(tuipj )m×n, and symmetrically, the product to user transition
probability matrix Tpu = (tpjui)n×m. These matrices indi-
cate the transition probabilities in a unified matrix format, and
can be efficiently used for matrix-formed propagation process
in the following.

4.3 Spam Probability Estimation
We consider the spam probability of each user and product,
and construct the user spam probability vector Pu, as well
as the product spam probability vector Pp by organizing the
spam probabilities as follows:

Pu = [P (u1), P (u2), P (u3), · · · , P (um)]
T (4)

Pp = [P (p1), P (p2), P (p3), · · · , P (pn)]
T (5)

Based on the transition probability matrices, we further es-
timate the probability vectors in a propagation manner. In
the i-th iteration, the following two rounds of propagation is
conducted:

Pi
p = TpuP

i−1
u , and Pi

u = TupP
i
p (6)

It should be noted that the spam probability of the labeled
users should be clamped before each round of iteration, which
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(a) Example for the prob-
lem of positive feedback

(b) Example for the prob-
lem of reliability

Figure 2: Toy examples that exposit the problems of positive
feedback and reliability, respectively, where the black user
nodes are those spam user accounts in the seed set.

means that all of the users in the seed set Us should be re-
assigned their initial spam probabilities (i.e., P (ui) = 1 for
ui ∈ Us). In this way, the algorithm converges. We present
the proof of convergence of this propagation process in the
following subsections.

4.4 Polishing the Edge Weights
Propagation-based algorithms in practical systems usually
suffer from the problem of positive feedback and the prob-
lem of the reliability of transition probabilities derived from
trivially designed edge weights. In this section, we investi-
gate the positive feedback problem and reliability problem in
detail, and further polish the edge weights in order to alle-
viate the problems to achieve better shilling attack detection
performances.

The Problem of Positive Feedback
Label propagation algorithms or random walks on bipartite
graphs usually face positive feedback problems, and this
is exampled in Figure 2(a). In this example, the user u3

rated only the product p1, and the spam probability will be
P (u3) = 0.5 for this user after the first round of iteration.
Before the second iteration begins, we will reset P (u1) = 1
because u1 is a seed user account. It is easy to see that
P (u3) = 0.75 after the second iteration, and it finally con-
verges to 1 as the iteration process proceeds on. The inher-
ent reason here is that u3 is a 1-degree node, which means
that the probability score of u3 will flow back to node p1,
which leads to the positive feedback problem, and this prob-
lem would magnify the noise in the bipartite graph and distort
the final results.

Suppose that a user rated a product with suspicious rat-
ings, while most of the other users made ordinary and consis-
tent ratings towards the specific product, then all of the spam
probabilities of the users will converge to 1 when the propa-
gation procedure terminates. Even if the 1-degree nodes are
removed from the results, the existence of the positive feed-
back problem will most likely misinterpret the explanations
of the ratings of other users.

The Problem of Reliability
The spam probability of a specific node comes from its adja-
cent nodes during the propagation process, and the weight of
each edge is related only to the specific rating from the cor-
responding user to the corresponding product. However, the

Algorithm 1: PROPAGATE(G,Us)
Input: G: Bipartite graph with polished weights

Us: Selected seed spam user set
Output: P (ui) for all users in G

1 repeat
2 for ui ∈ Us set P (ui) = 1;
3 Pp ← TpuPu;
4 Pu ← TupPp;
5 until Convergence;
6 return Pu;

correlation between a user and a product should be better de-
termined by the rating distribution of both nodes jointly, and
the current construction of bipartite graph fails to take this
factor into account.

Consider the sampled portion of nodes and edges from a
bipartite graph in Figure 2(b), where the edge from u1 and
u4 are equally weighted for the product node p2. We see that
the spam probability of u1 are mainly contributed from p2,
while the spam probability of u4 is equally contributed by p2
but with more contributed by p4. In such a case, the spam
probability contributed from u1 is more convincing than that
from u4 for product p2, although the corresponding edges are
equally weighted, because the probability from u4 is highly
absorbed by the single node p4 due to the relatively higher
edge weight between u4 and p4.

Based on the observations, we take the rating distribu-
tions of both the users and the products into consideration,
and adopt the following definition of bidirectional edge
weight, where for each edge 〈ui, pj〉 ∈ E , the new weight
w′ij is:

w′ij =
wij(∑

j′:〈ui,pj′ 〉∈E
wij′

)(∑
i′:〈ui′ ,pj〉∈E wi′j

) (7)

Intuitionally, this definition of bidirectional edge weight
helps to magnify the influence from those nodes with a close
relationship during the iterative process, and to minimize the
effect of noisy nodes. We replace wij with this polished
weight w′ij in Eq.(2) and Eq.(3) to calculate the transition
probability, and the algorithm of the propagation process for
spam user account detection is described in Algorithm 1.

4.5 Proof of Convergence
We can see that both the user to product transition matrix Tup

and the product to user transition matrix Tpu are right stochas-
tic matrices, where each row of them consists of nonnegative
real values summing to 1.

Consider the underlying user to user transition matrix
Tuu = TupTpu in each iteration, where each element tij ∈
Tuu is tij =

∑
k(tuipk

tpkuj
), and we have:∑

j

tij =
∑
j

∑
k

(tuipk
tpkuj ) =

∑
k

∑
j

(tuipk
tpkuj )

=
∑
k

tuipk

∑
j

tpkuj
=
∑
k

tuipk
= 1

(8)
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As a result, the user to user transition matrix Tuu in each
iteration is also a right stochastic matrix, and the user spam
probability matrix Pu after an iteration process will be:

Pi
u = TupTpuP

i−1
u = TuuP

i−1
u (9)

Without loss of generality, let the top l rows/columns in
Tuu correspond to the selected seed users, and the remaining
r rows/columns therein correspond to the unable users. Then
the transition matrix Tuu can be split into a block matrix in
the following manner:

Tuu =

[
Tll Tlr

Trl Trr

]
(10)

Similarly, let the user spam probability vector Pu =

[Pl Pr]
T , where Pl are the top l elements of Pu that corre-

spond to the seed users, and Pr are the remaining unlabelled
users.

It can be noted that Pl never really changes because we
reassign the spam probability of the seed users to one in the
beginning of each iteration. It is proved by [Zhu and Ghahra-
mani, 2002] that Pr converges to (I−Trr)−1TrlPl if Tuu is a
right stochastic matrix. As a result, the user spam probability
matrix Pu converges in the propagation process. Leverag-
ing the same technique, we can prove that the product spam
probability matrix Pp also converges.

5 Experiments
In this section, we conduct extensive experiments to evalu-
ate the propagation-based framework for shilling attack user
detection. We begin by introducing the experimental setup
and evaluation measures, and then we report and analyze the
experimental results of our framework.

5.1 Dataset Description
Previous work on shilling attack detection mostly experiment
on simulated datasets. Typically, they insert simulated spam
users with suspicious actions (e.g., large amount of ratings)
into an original dataset, and attempt to detect these inserted
users. We argue that this paradigm is infeasible for the evalu-
ation of shilling attack detection, and we should better lever-
age complete real-world datasets for the detection of spam
accounts.

To do so, we choose the Amazon Movie dataset1 for experi-
mentations. The Amazon Movie dataset consists of 8,567,727
reviews from 1,318,175 users towards 235,042 movies. To re-
move the cold users, we selected those users with at least 100
historical reviews, and this results in 297,073 reviews from
5,519 users towards 70,633 movies.

An important feature of the Amazon Movie dataset is that,
each review is accompanied with the number of times that
it is rated as helpfulness by users in Amazon, as well as the
times that it is rated as unhelpfulness. Based on these ratings,
we calculate the percentage of times that a user’s reviews are
rated as helpfulness by other online users, and empirically
selected those users whose percentages of helpfulness ratings
are less than 0.3 as candidate spam users accounts. These

1http://snap.stanford.edu/data/web-Amazon.html

accounts are further labeled by three human annotators with
careful observation into the user accounts in Amazon.com,
and those users that are labeled as spam by more than two
annotators are finally selected as spam accounts. The inter-
annotator agreement is 78.2%. This gives us 583 spam user
accounts, and we randomly select 300 users therefrom to con-
struct the seed user set, and reserve the remaining 283 users
as testing set.

5.2 Evaluation Protocol
We adopt the frequently used evaluation measures of
Precision@k (P@k), Recall@k (R@k), and F-measure@k
(F1@k) for performance evaluation. Each user will be as-
signed a score of spam probability when the propagation pro-
cess terminates, we thus rank the users in descending order
of spam probability, and select the top-k users as the set of
spam user accounts Uspam. Suppose the set of spam users
reserved for testing is Utest, then the evaluation measures are
calculated as follows:

P@k =
Uspam ∩ Utest
Uspam

, R@k =
Uspam ∩ Utest
Utest

(11)

and F1@k is thus calculated based on P@k and R@k.

5.3 Spam User Account Detection
We evaluate the performance of spam user account detection
under different choices of prediction length k, and the perfor-
mance v.s. different choices of k are shown in Table 1.

k 100 200 300 400 500 600
P@k 0.983 0.952 0.927 0.718 0.588 0.497
R@k 0.261 0.522 0.726 0.749 0.768 0.778
F1@k 0.413 0.674 0.814 0.733 0.666 0.606
k 700 800 900 1000 1500 2000
P@k 0.431 0.385 0.343 0.310 0.215 0.169
R@k 0.789 0.804 0.807 0.809 0.843 0.880
F1@k 0.558 0.521 0.482 0.448 0.343 0.283

Table 1: Performance of spam user account detection under
different choices of prediction length k, and the best perfor-
mance on Precision, Recall, and F-measure are bolded.

The results show that we can achieve superior performance
on the Precision@k when the prediction length k is relatively
low. This means that our algorithm tends to give reliable
spam accounts for those users that are predicted with high
spam probabilities. Besides, the performance of Recall@k
increases with the increase of prediction length, which is not
surprising. Our algorithm achieves the best performance on
F1-measure of 0.814 with a prediction length of k = 300,
where the corresponding precision P@k = 0.927 and re-
call R@k = 0.726, which is a well deserving performance
in practical applications.

5.4 Comparison with Baseline Methods
We experiment with the most commonly used spam detection
approaches of Support Vector Machine (SVM), Logistic Re-
gression (LR), and Radial Basis Function Networks (RBFN)

2412



[Orr, 1996] as baseline methods to conduct binary classifica-
tion between normal users and spam users.

To do so, we first generate feature vectors to be adopted
as inputs by the baseline methods. We conduct Matrix Fac-
torization (MF) on the original user-item rating matrix by the
widely adopted MF method of Singular Value Decomposition
(SVD) [Abdi, 2007], with the number of latent factors set as
50. This process gives us a 50-dimensional feature vector for
each user and each item in the dataset.

For each baseline method, we use the 50-dimensional user
vector as features to classify spam users and normal ones.
We conducted five-fold cross-validation for each experimen-
tal setting. As our testing set in the previous experiment of
spam account detection includes 283 (∼300) users, we adopt
the average Precision@k for k = 100, 200, and 300 to calcu-
late the comparable accuracy of our Fraudulent Action Prop-
agation (FAP) method, and the results are shown in Table 2.

SVM LR RBFN FAP
Accuracy 92.98% 92.76% 93.02% 95.45%

Table 2: Accuracy of baseline methods, p-value< 0.01.

We see that our proposed propagation-based framework
outperforms the commonly used shilling attack detection ap-
proaches. Besides, by comparing the performance on spam
user detection of our framework (reported in the previous
subsection) with the baseline methods (in this section), our
propagation-based approach also gains superior performance
in a large range of the selection of prediction length k.

5.5 Boost Existing Methods with Spam Probability
Except for conducting spam user account detection as a sole
method, the spam probability produced by our framework can
be further adopted as a discriminative feature to boost exist-
ing (baseline) spam detection approaches to achieve superior
shilling attack detection performances.

Based on the spam probability estimated by our propaga-
tion framework, we further conduct experiments to boost the
performance of LR, SVM, and RBFN methods, so as to verify
the discriminative ability of our spam probability as features
in the process of classification.

To do so, we append the corresponding spam probability
of each user produced by our propagation process to the cor-
responding 50-dimensional feature vector given by the SVD
method in the previous subsection, which results in a 51-
dimensional feature vector representation. To keep the same
model complexity, we append a trivial value of 1 to the orig-
inal 50-dimensional feature vector for each user, and thus
also extend its dimension to 51 for fair performance compari-
son. The results on classification accuracy are shown in Table
3, where “+SP” indicates the performance of integrating our
Spam Probability as a feature.

SVM SVM+SP LR LR+SP RBFN RBFN+SP
Accuracy 93.06% 94.08% 92.95% 97.64% 93.06% 94.26%

Table 3: Classification accuracy by integrating spam proba-
bility as a feature, p-value< 0.01.

We can see that the spam probability given by our propaga-
tion framework helps to boost the performance of other spam

detection approaches. This indicates that the spam probabil-
ity given by our framework is a discriminate and promising
feature to distinguish spam users from normal ones. This ob-
servation also grants the ability of our framework to generally
help boost the performance in other related scenarios such as
social networks or forums.

5.6 Algorithm Robustness Analysis
An important factor in our propagation-based framework is
the choice of spam users as seeds, because the spam proba-
bility of each user is inherently propagated from the selected
seed users. To investigate the robustness of our framework,
we further experiment with the influence of the number of
seed users adopted.

Of the 583 spam users in total, we randomly select N users
as seed users, and reserve the remaining for evaluation, where
N ranges from 30 to 360 with a step size of 30. For each
choice of N , we evaluate the P@k, R@k, and F1@k with
choices of k = 100, 200, · · · , 500, and average the results to
obtain an aggregated view. The results of aggregated preci-
sion, recall, and F-measure is shown in Figure 3.

Figure 3: Precision, recall, and F-measure v.s. the number of
seed users in the propagation process.

We see that in the beginning, the performance of our frame-
work tends to rise along with the increase of the number of
seed users selected, but it then tends to keep stable although
we added more seed spam users into the framework. Besides,
the performance on the measures of precision, recall, and F-
measure exhibit similar trends.

This experimental result indicates that our framework does
not require linearly more seed spam users in order to gain bet-
ter performance. More precisely, when an adequately enough
number of seed users (e.g., about 300 in this experiment) are
incorporated to obtain satisfactory performance, there would
be no need to add further more seed users to the propagation
process, and this is the reason that we selected 300 spam users
as seeds in the previous experiments.

This feature of our framework is favourable because it
grants us the ability to achieve superior performance with a
limited number of (perhaps manually selected and thus time
consuming) seed spam users in practice.

6 Conclusions and Future Work
Shilling attack and spam user detection is crucial to personal-
ized recommender systems to provide accurate recommen-
dation results. In this paper, we investigated the problem
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of shilling attack detection by proposing a unified frame-
work based on spam probability propagation on user to prod-
uct bipartite graphs, which alleviates researchers and prac-
titioners from the exhausting work of fighting against con-
tinuously emerging new attack strategies. We further inves-
tigated the problems of positive feedback and reliability in
propagation-based frameworks, and constructed meticulously
designed edge weights for more accurate user to product rela-
tionship estimation in the bipartite graphs. Extensive exper-
imental results on real-world Amazon movie review dataset
verified the effectiveness of our framework, and the possibil-
ity to boost other shilling attack detection approaches with
the spam probability features produced by our framework.

This work is a first attempt towards the approach of uni-
fied shilling attack detection in review systems, and there is
much room for further improvements. Besides the numerical
ratings that we used for edge weight estimation, we can well
incorporate other information available in review systems to
construct more discriminative edge weights for propagation,
for example, the demographic information of users and the
content information of products. We will also investigate au-
tomatic unified shilling attack detection in other online sys-
tems such as social networks or forums. The automatic prop-
agation framework can even be leveraged in other online tasks
like rumour detection in twitter and microblogging systems.
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