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ABSTRACT

Slate recommendation generates a list of items as a whole instead

of ranking each item individually, so as to better model the intra-

list positional biases and item relations. In order to deal with the

enormous combinatorial space of slates, recent work considers

a generative solution so that a slate distribution can be directly

modeled. However, we observe that such approachesÐdespite their

proved effectiveness in computer visionÐsuffer from a trade-off

dilemma in recommender systems: when focusing on reconstruc-

tion, they easily over-fit the data and hardly generate satisfactory

recommendations; on the other hand, when focusing on satisfying

the user interests, they get trapped in a few items and fail to cover

the item variation in slates. In this paper, we propose to enhance the

accuracy-based evaluation with slate variation metrics to estimate

the stochastic behavior of generative models. We illustrate that

instead of reaching to one of the two undesirable extreme cases in

the dilemma, a valid generative solution resides in a narrow łelbowž

region in between. And we show that item perturbation can enforce

slate variation and mitigate the over-concentration of generated

slates, which expand the łelbowž performance to an easy-to-find

region. We further propose to separate a pivot selection phase from

the generation process so that the model can apply perturbation

before generation. Empirical results show that this simple modi-

fication can provide even better variance with the same level of

accuracy compared to post-generation perturbation methods.
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1 INTRODUCTION

In most recommender systems, items are naturally exposed to users

as a slate, which usually contains a fixed number of items, e.g., a

1-by-5 list of recommended items, or a 2-by-2 block that can fit a

mobile phone screen. This leads to the idea of slate recommendation,

also known as exact-𝑘 recommendation [18, 42]. The problem is

usually formalized as generating a slate of items such that certain

expected user behavior (e.g., the number of clicks) is maximized.

The challenge of this problem is that the number of possible slates is

combinatorially large [44]. For example, for a system with 𝑛 items,

to generate a slate of 𝑘 items, the possible number of slates will be

𝑂 (𝑛𝑘 ), which is huge given that many recommender systems work

on millions or even billions of items.

Traditional ranking-based recommendationmodels such as learn-

ing-to-rank (LTR) [7, 8, 17, 33, 37] first predicts the probability of

user engagement on each candidate item, and then selects the top-

ranked ones as the recommendation list. Despite its well-recognized

effectiveness and scalability, this ranking and selection process is

greedy in essence and neglects the fact that the user behavior

on an item may be influenced by other (e.g., complementary or

competitive) items exposed in the same list [29, 48], thus resulting

in its sub-optimality. Furthermore, evidence has shown that one can

improve the recommendation performance by taking into account

the intra-list item relations in ranking [2, 8, 13, 18, 36, 48].

Recently, researchers have explored the possibility of solving

this problem by directly generating the slate as a whole to break the

limitation of ranking-based approaches. Many of the approaches

are based on generative models such as Variational Auto-Encoders

(VAE) [23, 28]. However, these generative models are stochastic in

nature and their variational behavior may not produce satisfactory

slate recommendations. For example, in the case of VAE-based mod-

els, the performance depends on a trade-off coefficient 𝛽 [23]Ðthe

larger the 𝛽-value during training, the more the model is focused on

encoding variation control against the data reconstruction accuracy.

In terms of slate recommendation, this phenomenon diverges the

generative results into one of the three cases:

• Over-reconstruction: when 𝛽 is smaller than some lower

threshold 𝛽−, it tends to overfit the slate reconstruction on

the training set. Though the resulting generated slates have

extremely high variance, the model usually fails to generate

satisfactory recommendations.

• Over-concentration: when 𝛽 is larger than some upper

threshold 𝛽+, the model tends to choose from only a few

prototypical slates that achieve satisfactory performance but

fails to explore the variety of slates.

• Elbow case: when 𝛽 is selected in an appropriate region

(i.e., 𝛽 ∈
[
𝛽−, 𝛽+

]
), it gives intermediate item variety and is
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able to fulfill certain degree of user interests. We show that

this transitional region is the most suitable for slate recom-

mendation task. Unfortunately, this very setting usually lies

in a narrow region (e.g. 𝛽+ − 𝛽− ≪ 10−2) while the search

space of 𝛽 can be arbitrarily large.

We denote this as the Reconstruction-Concentration Dilemma (RCD)

and in this paper we investigate possible solutions that can increase

the variety of items under the over-concentration case. To achieve

this, one can simply apply post-generation perturbation to enforce

item variety, yet this solution ignores the intra-slate features and

significantly downgrades the recommendation accuracy. With this

in mind, we further derive a modification of the original generation

process, so that it can perturb before the final generation while

reducing the negative effect of the perturbation. Specifically, when

generating a slate, it follows a two-phase procedure: first, a pivot

selection model chooses an item for a fixed slate position; then a

slate completion model generates the remainder of the slate based

on the pivot item alongwith other constraints.With this framework,

we summarize our contributions as below:

• We propose to consider both the slate accuracy metric and

the slate variation metric when evaluating models that gen-

erate stochastic slates.

• We identify the RCD with these metrics and show that the

most desirable recommendation performance appears in a

narrow łelbowž region.

• We conduct experiments on real-world datasets and simu-

lation environments to show that enforcing variation can

mitigate over-concentration and extend the elbow’s perfor-

mance to a wide range of search space.

• We show that the proposed pivot selection phase can pro-

vide better control over the slate variation under the over-

concentration case of the dilemma.

In the following sections, we first list related studies in section 2,

then describe how generative slate recommendation is achieved in

section 3.1. Further, we explain how to employ variance metrics as

complements of accuracy metrics in section 3.2, and then introduce

our slate recommendation framework in section 3.3. We present

our experimental results on both real-world datasets and simula-

tion environments in section 4 and 5 as the evidence to support

our claims. And finally, we discuss some other possible solutions

that may also improve the item variety to bridge the gap between

generative methods and recommendation systems.

2 RELATED WORK

There exist several types of generative modeling approaches to

recommender systems. The most studied area is to leverage re-

current neural networks (RNN) [14]. It models the probability

of each item conditioned on all previously recommended items

𝑃 (𝑑𝑖 |𝑑𝑖−1, . . . , 𝑑1) and consecutively make recommendations from

𝑑1 to 𝑑𝐾 . Modeling in this way means that the recommendation of

item 𝑑𝑖 does not depend on the items 𝑑𝑖+1, . . . , 𝑑𝐾 that appear later,

which weakens the intra-list relation of the recommendations. This

sub-optimality has already been shown in [28]. Another track of

research uses auto-encoder for recommendation [32, 38], but they

model the user history profiles instead of the distribution of slates.

A recent line of research adopts reasoning-based recommendation

models [11, 40, 47], which models recommendation as a cognition

rather than perception task and adopts neural reasoning rather

than neural matching models for better recommendation.

In addition to the generative approach represented by [28], there

are other efforts that aim to deal with slate recommendation us-

ing reinforcement learning (RL) [16, 26, 27, 42]. Like the early at-

tempts [39, 43], this type of methods mostly targets on exploring

how to make use of the long term effects of several consecutive

recommendations by transforming the slate and its user reaction

as łstatesž in RL. Though they are suitable for solving the problem

of slate recommendation, the essence behind RL and generative

methods are mostly complementary, since a generated model can

be pretrained and transplanted as the actor in RL frameworks.

We can also consider slate recommendation as a type of list

recommendation, but the list size is fixed. Except for accuracy mea-

sures, there are many list-wise metrics that are proved beneficial

to both the recommender systems and its customers, including but

not limited to coverage [19] and intra-list diversity [49, 50]. Typi-

cally, the solution has to balance between accuracy and diversity,

such as Max-Marginal Relevance (MMR) [9], relative benefits [6],

𝛼-NDCG [12], and Determinantal Point Process (DPP) [15]. But

as pointed out by Jiang et al. [28], it will be unfair to compare

these essentially discriminative methods in generative settings, and

conversely, it will be unfair for generative methods to compete in

traditional LTR settings. In order to show this deviation, we investi-

gate how much discriminative ranking methods are different from

generative methods if compared in the same setting in section 5.

A relatively unrelated track that considers slate-wise patterns

is to re-rank the items based on the expected user interaction on

the candidate slate [1, 3, 46]. However, the items available for re-

ranking are often restricted to the candidates given by some base

ranking model. Our problem is about directly generating slate rec-

ommendations with no restriction on candidate items, which is

essentially a different task. One should also distinguish slate recom-

mendation with session-based recommendation [22], which usually

consists of user interaction history of arbitrary length, typically

with a sequence of sessions, and the major research focus is on the

modeling of the user sequential behaviors [14, 41].

3 GENERATIVE SLATE RECOMMENDATION

The corpus of items is denoted asD, and a slate of size 𝐾 is defined

as an ordered list of items 𝒔 = (𝑑1, 𝑑2, . . . , 𝑑𝐾 ), where 𝑑𝑘∈D and

positional index 𝑘 ∈ {1, . . . , 𝐾} represents that the item appeared

in the 𝑘-th slot in the slate. A user’s response to a slate 𝒔 is denoted

as 𝒓 = (𝑟1, 𝑟2, . . . , 𝑟𝐾 ), where 𝑟𝑘 is the response on item 𝑑𝑘 , e.g.,

𝑟𝑘 ∈ {0, 1} represents 𝑑𝑘 is clicked or not. Assume that each slate

𝒔 has corresponding latent unknown features 𝒛 and some known

characteristics/constraints 𝒄 . Typically, let 𝒄 = onehot(
∑𝐾
𝑘=1

𝑟𝑘 )

so that the user responses are contained in the constraints. For

example, for a slate with 0 click, the corresponding constraint would

be [1, 0, 0, 0, 0, 0], while for a slate with 3 clicks, the constraint would

be [0, 0, 0, 1, 0, 0]. Unlike discriminative rankingmethods that model

𝑅(𝒓 |𝒔), which is the user response for a given slate, the goal of

generative slate recommendation models is to learn the distribution

of slates with the given constraints:

𝑃𝜃 (𝒔 |𝒛, 𝒄)
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where 𝒛 is the latent slate encoding. An optimal slate 𝒔∗ should

maximize the expected number of clicks E[
∑𝐾
𝑘=1

𝑟𝑘 ], so during

recommendation, one should provide to the inference model with

the maximum number of clicks as constraint 𝒄∗ = [0, 0, 0, 0, 0, 1]

(correspond to the ideal all-clicked response 𝒓∗ = [1, 1, 1, 1, 1]).

Different from the setting in [28], we also allow user features, so the

constraint vector 𝒄 in this case will be the concatenation of extracted

user embedding and the aforementioned transformed response. As

we will discuss in section 5.4, a more fine-grained constraint vector

that involves user is more likely to induce a smooth distribution

instead of a disjoint manifold in the encoding space 𝒛.

3.1 Slate Generation Model

To find a good generative model 𝑃𝜃 (𝒔 |𝒛, 𝒄), a Conditional Varia-

tional Auto-Encoder (CVAE) framework learns a set of latent factors

𝒛 ∈ R𝑚 such that 𝒛 can encode sufficient high-level information

to reproduce the observed slates with maximum likelihood. As

formulated in [30], a variational posterior 𝑄𝜙 (𝒛 |𝒔, 𝒄) is used as an

approximation to solve the intractable marginal likelihood (which

involves integral over latent 𝒛). The resulting model structure con-

tains an encoder 𝑄𝜙 that learns to encode the input slate 𝒔 and

constraint 𝒄 into a set of variational information (e.g., the mean

and variance when Gaussian prior is assumed) of each factor of

𝒛, and a decoder 𝑃𝜃 , which corresponds to the generative model.

When training the model, one can maximize the variational Evi-

dence Lower Bound (ELBO) of the data likelihood [30], which is

equivalent to minimizing:

L𝒔 = E𝑄𝜙 (𝒛 |𝒔,𝒄)

[
log 𝑃𝜃 (𝒔 |𝒛, 𝒄)

]
− 𝛽KL

[
𝑄𝜙 (𝒛 |𝒔, 𝒄)∥𝑃𝜃 (𝒛 |𝒄)

]
(1)

where 𝑃𝜃 (𝒛 |𝒄) is the conditional prior distribution of 𝒛, KL repre-

sents the Kullback-Leibler Divergence (KLD), which restrains the

distance measure between two distributions, and 𝛽 is the trade-off

coefficient as described in section 1. The encoder, decoder, and the

conditional prior are all modeled by neural networks to capture

complex feature interactions. With the decoder, items of each slate

are selected based on the dot product similarity between output

embeddings and embeddings of all items in D. During training, in

order to avoid overfitting, the reconstruction loss is calculated by

the cross entropy over down-sampled items instead of the entireD.

At inference time, the slate is generated by passing the ideal condi-

tion 𝒄∗ into the decoder along with a randomly sampled encoding 𝒛

(e.g., from random Gaussian) based on the variational information

provided by the conditional prior.

In the loss Eq. (1), we can interpret the KL divergence as how

well the learned encoding 𝒛 distribution is regulated by the guiding

prior 𝑃𝜃 (𝒛 |𝒄), and the other term reveals how well existing slates

are reconstructed. According to [23], manipulating the trade-off

parameter 𝛽 will push the model to favor one of the terms over the

other. For example, if we assume isotropic Gaussian as the prior

distribution and set larger 𝛽 , the factors in the learned 𝒛 space

will become more disentangled, and thus more meaningful control

over the generation, but with a possible downgrade of reconstruc-

tion performance resulting in unrealistic generation. Despite its

feasibility in many other tasks, as we will discuss in section 5.1,

this 𝛽 leads to a reconstruction-concentration trade-off that barely

provide satisfactory recommendation results.

3.2 Variance Evaluation of Generated Slates

Many generative methods (e.g. VAEs and GANs[20]) are stochastic

in terms of the output, but it is possible that the slate encoding 𝒛

is not obtained through an encoder model so one cannot simply

estimate the slate variance based on 𝒛. Thus, we are interested in

evaluation metrics that can estimate the variance of slates for a

wide range of stochastic models.

An evident choice is directly using item variance across all

possible generated slates. Since items are typically represented by

embedding vectors, let 𝒙1, . . . , 𝒙𝐾 be the vector representations of

generated items. For simplicity, assume conditional independence

among factors of 𝒙 , then the item variance can be calculated as the

variance of each factor and be approximated by sampling:

Cov(𝒙) = E𝒔∼𝑃𝜃

[
1

𝐾

𝐾∑

𝑖=1



𝒙 (𝒔)
𝑖 − 𝝁



2
]

= lim
𝑁→∞

1

𝑁𝐾

𝑁∑

𝑗=1

𝐾∑

𝑖=1



𝒙 (𝒔 𝑗 )

𝑖 − 𝝁


2

(2)

where 𝑁 is the number of generated slate samples, and each slate

𝒔 𝑗 is sampled from 𝑃𝜃 (𝒔 |·). Note that 𝝁 is the average of all 𝑁𝐾

generated items, and it depends on the input constraint. If the

generative model is personalized, then the user is included in the

input of 𝑃𝜃 and the generation process will first run𝑁 times for each

user to give personalized variance estimation, then the estimations

are averaged for all users.

Let 𝝁 (𝒔) be the average item of slate 𝒔:

𝝁 (𝒔)
=

1

𝐾

𝐾∑

𝑖=1

𝒙
(𝒔)
𝑖 (3)

then each slate variance in Eq.(2) can be decomposed into:

𝐾∑

𝑖=1

∥𝒙
(𝒔 𝑗 )

𝑖 − 𝝁∥2 =

𝐾∑

𝑖=1

∥𝒙
(𝒔 𝑗 )

𝑖 − 𝝁 (𝒔 𝑗 ) + 𝝁 (𝒔 𝑗 ) − 𝝁∥2

=

( 𝐾∑

𝑖=1

(𝒙
(𝒔 𝑗 )

𝑖 −𝝁 (𝒔 𝑗) )⊤(𝒙
(𝒔 𝑗)

𝑖 −𝝁 (𝒔 𝑗) )+

𝐾∑

𝑖=1

(𝝁 (𝒔 𝑗 )−𝝁)⊤(𝝁 (𝒔 𝑗)−𝝁)

+ 2(𝝁 (𝒔 𝑗 ) − 𝝁)⊤
𝐾∑

𝑖=1

(𝒙
(𝒔 𝑗 )

𝑖 − 𝝁 (𝒔 𝑗 ) )

)

(4)

Since the last term has
∑𝐾
𝑖=1 (𝒙

(𝒔 𝑗 )

𝑖 − 𝝁 (𝒔 𝑗 ) ) = 0 (from Eq.(3)), it

simplifies the total item variance as:

Cov(𝒙)= lim
𝑁→∞

1

𝑁

𝑁∑

𝑗=1



𝝁 (𝒔 𝑗 )−𝝁


2+ 1

𝑁𝐾

𝑁∑

𝑗=1

𝐾∑

𝑖=1



𝒙 (𝒔 𝑗 )

𝑖 −𝝁 (𝒔 𝑗 )


2 (5)

where the first term describes the slate-mean variance and the

second term describes the intra-slate variance. Each of the two

terms provides a lower bound for the total item variance, and con-

versely, the total item variance Eq.(2) gives an upper bound for

either term. A useful conclusion we can derive from this is that

models good at one of the two terms in Eq.(5) may not be the one

that achieves the best total item variance. On one hand, models

with good intra-slate variance may still provide repeating slate

with the same 𝝁 (𝒔 𝑗 ) = 𝝁, which results in extremely low slate-

mean variance. On the other hand, models with good coverage of
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item across slates may still have repeated items (in the most ex-

treme case, 𝒙
(𝒔 𝑗 )

𝑖 = 𝝁 (𝒔 𝑗 ) when all items are equal) inside each slate

inducing reduced intra-slate variance. Intuitively, we would like to

make both slate-mean variance and intra-slate variance sufficiently

large in order to support good total variance. Thus, the evaluation

protocol should at least include two of the metrics among total item

variance, slate-mean variance, and intra-slate variance.

3.3 The Two-Phase Generation Framework

We seek to enforce slate variation when CVAE model provides

over-concentrated recommendations (i.e., the large 𝛽 case of RCD).

A straightforward solution is to perturb the generated slate by

considering each position as a separate ranking model. However,

this post-generation perturbation is very hard to control and always

takes the risk of significant downgrade of recommendation accuracy

(detail in Appendix A), due to the large perturbation space and the

ignorance of the positional bias and item relations. With this in

consideration, we turn to pre-generation perturbation and propose

a simple and effective CVAE framework to mitigate the problem. In

general, we separate the original generative process into two steps:

𝑃𝜃 (𝒔 |𝒛, 𝒄) = 𝑃𝜃 (𝑑1, . . . , 𝑑𝐾 |𝒛, 𝒄)

= 𝑃𝜃 (𝑑2, . . . , 𝑑𝐾 |𝑑1, 𝒛, 𝒄)𝑃𝜃 (𝑑1 |𝒛, 𝒄)
(6)

That is, the framework first uses a pivot selection model 𝑃𝜃 (𝑑1 |𝒛, 𝒄)

to select an adequate pivot item for a fixed slate position (here 𝑑1
means we always generate the first appearing item in the slate).

Then with this pivot item as additional condition, a slate completion

model 𝑃𝜃 (𝑑2, . . . , 𝑑𝐾 |𝑑1, 𝒛, 𝒄) generates the rest of the items for the

slate.With this separation, we can avoid RCD by enforcing variation

of resulting slates through perturbation in the first stage, and use

the second phase to clean up the mess if it has made a bad choice of

pivot. As illustrated in Figure 1, the pivot controller is only applied

to the generative decoder. Compared to the standard VAE model,

little has to be nudged in the encoder 𝑄 (𝒛 |𝒔, 𝒄) since it already has

the potential to encode any intra-slate pattern.

Picking Pivot Item for the Slate: 𝑃𝜃 (𝑑1 |𝒛, 𝒄) will predict an

item as the pivot, based on this, the slate completion model will fill

in the rest of the slate according to the pivot. In other words, the

goal of this part is to find the best item for a certain position in the

slate, based on the encoding 𝒛 and constraint 𝒄 . It first generates

an łidealž latent item embedding 𝒙̂1, and then applies dot product

with all item embeddings in Ψ to find the closest item as the 𝑑1.

The minimization of the reconstruction term can be achieved by

optimizing the cross entropy with softmax. In practice, we also use

down sampling [35] to reduce the computational cost and alleviate

over-fitting on the training set. Readers may notice that this part

can be treated as a typical ranking model and thus any learning-to-

rank framework is suitable for its training, only that one instead of

many items are selected at a time.

Similar to sequential modeling, the training of 𝑃𝜃 (𝑑1 |𝒛, 𝒄) is made

independent of the later slate completion model, and in both train-

ing and inference, this pivot selection phase allows perturbation

which improves the item variation. Yet, perturbation inevitably

causes information loss and downgrades the recommendation ac-

curacy. Theoretically, taking the simplest assumption that item

interactions are directional and are all binary relations, then there

are at most 𝐾 (𝐾 − 1) such interactions between items for a slate

of size 𝐾 . This separation and the introduction of perturbation

mean that our model neglects 𝐾 − 1 of them (from 𝐾 − 1 remaining

items towards the pivot). Even though, in our experiments, we

find that this pre-generation perturbation can improve item variety

more significantly with only a minor loss of accuracy compared

to post-generation perturbations, which means that the later slate

completion model is able to correct the slate according to the per-

turbed pivot. Additionally, we suggest to pick one pivot instead of

more in this phase, since for any 1 < 𝑘 ′ < 𝐾 (in the binary relation

case), when choosing 𝑘 ′ pivots, the number of missing relations

will be (𝐾 −𝑘 ′)𝑘 ′ ≥ 𝐾 −1, which indicates more loss of information

and recommendation accuracy.

Slate Completion with a Given Pivot Item: After the selec-

tion of the pivot, the goal of the slate completion model

𝑃𝜃 (𝑑2, . . . , 𝑑𝐾 |𝑑1, 𝒛, 𝒄) (7)

is to learn to fill up the remaining items that can satisfy the desired

constraint 𝒄 . A forward pass will take as input the selected pivot

𝑑1, the encoding 𝒛 (which is the output of 𝑄 if training, output of

the conditional prior 𝑃𝜃 (𝒛 |𝒄
∗) if inference, as in VAE Eq.(1)), and

the constraint 𝒄 , then output a set of łbestž latent item embeddings

𝒙̂2, . . . , 𝒙̂𝐾 for each of the remaining slots in the slate. After gen-

erating these latent embeddings, it will find for each of the 𝒙̂𝑖 the

nearest neighbor in the candidate set D through dot product sim-

ilarity. Similar to that in the pivot selection model, we can again

apply cross-entropy loss with softmax and negative sampling dur-

ing training. Note that this is the final generation stage and it does

not employ perturbation.

Compared to inference time when the model can only use the

inferred 𝑑1 ∼ 𝑝𝜃 (𝑑1 |𝒛, 𝒄) from the pivot selection model, during

training, there is another valid choice of the pivot - the ground

truth item in the data. We find that the later choice achieves the

same performance but usually exhibits faster convergence. Thus, we

adopts the ground truth item𝑑1 for the input of the slate completion

model during training in our experiments, and if perturbation,

we calculate item similarities based on the ground truth instead

of the inferred item embedding. Additionally, when the pivot is

perturbed during training, the slate completion model tends to

learn a łdenoisedž intra-slate patterns which may results in a slate

that is more accurate but with less variation, compared to training

without perturbation, as we will discuss in section 5.3.

4 EXPERIMENTAL SETTING

4.1 Real-world Datasets

We conducted experiments 1 on two real-world datasets. The first

is YOOCHOOSE 2 from RecSys 2015 Challenge and we follow

the same reprocessing procedure as [28]. The resulting dataset

contains around 274K user slate-response pairs. Note that there is

no user identifier involved in this dataset, so our second dataset

is constructed from the MovieLens 100K3 dataset. We split user

rating sessions into slates of size 5 and consider the rating of 4-5

as positive feedback (with label 1) and 1-3 as negative feedback

1Code link: https://github.com/CharlieFaceButt/PivotCVAE
2https://2015.recsyschallenge.com/challenge.html
3https://grouplens.org/datasets/movielens/100k/
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Figure 1: Structure of the generative framework during

training. 𝒔 is the input slate of size 𝑘 . 𝒓 is the user response

vector of the input slate. 𝒔̂ represents the output slate in-

ferred by decoder.Ψ andΨ
(𝑢) extract pretrained embeddings

for items and users, respectively.

(with label 0). The resulting distribution of slate responses (Figure

8 in Appendix C) is similar to that in the Yoochoose dataset. We

consider two versions of this dataset:ML (User) andML (NoUser)

to investigate how the presence of user affects the generative results.

Compared to ML(User), the ML(No User) dataset ignores user IDs

like Yoochoose data. Since both datasets are skewed towards slates

with 0 and 3 clicks, we augment the records of 1,2,4, and 5 clicks

by random repetition until each group has at least half the size

of the largest response type. Note that these offline log data have

limited feasibility for evaluation since they cannot provide accurate

estimations for unseen records. Thus, an additional user response

model 𝑅 : D𝐾 → {0, 1}𝐾 is trained (with binary cross-entropy

loss) to fulfill the role of łground truthž user feedback.

4.2 Simulation Environment Settings

To observe how generative models behave for unseen slates under

different environment settings and to investigate the difference

between slate generation metrics and traditional ranking metrics,

similar to existing works [26, 28], we employ simulations with

plugins of positional biases and item interactions.

The primary goal of the simulated environment is to model

𝑅(𝒓 |𝒔, 𝒖) that predicts the users’ true responses given slate 𝒔. And

for each of the simulators described in this section, the final re-

sponse for each item 𝑑𝑘 is sampled by Bernoulli distribution with

click probability I(𝑑𝑘 , 𝑗), which represents user 𝑗 ’s interest for 𝑑𝑘 :

𝑟𝑘 = 𝑅(𝑟𝑘 𝑗 |𝑑𝑘 , 𝑗) ∼ Bernoulli(I(𝑑𝑘 , 𝑗)) (8)

Thus, the click behavior follows Poisson binomial distribution, and

the expectation of the number of clicks is:

E

[ 𝐾∑

𝑘=1

𝑟𝑘

]
=

∑

𝑑𝑘 ∈𝒔

I(𝑑𝑘 , 𝑗) (9)

We tune the resulting distribution with proper setting (details in

appendix D) so that it coincides with that of real-world datasets.

Specifically, each simulation is built based on a basic User Re-

sponse Model (URM), which only considers point-wise user-item

responses like the matrix factorization model. By adding awareness

Table 1: Pivot-CVAE variations

Models
perturbation of 𝑑1

training time inference time

Pivot-CVAE (GT-PI)

Pivot-CVAE (SGT-PI) ✓

Pivot-CVAE (GT-SPI) ✓

Pivot-CVAE (SGT-SPI) ✓ ✓

of positional bias and multi-item relations, we obtain URM_P (P

stands for positional bias) and URM_P_MR (MR stands for multi-

item relations), respectively. The URM_P_MR consists of a coeffi-

cient 𝜌 for the weight of the multi-item relations. As a special case,

setting 𝜌 = 0 will tell the simulation to include no item relations

and the environment will reduce to URM_P. The details of each

simulation environment are given in Appendix D.

Simulation Data: We set up three URM_P_MR environments

(|D| = 3, 000, |U| = 1, 000) with different values of 𝜌 ∈ {0, 0.5, 5.0}.

Note that there is no need to train a response model from the

generated dataset like that for real-world datasets. Conversely, we

generate a training set of 100,000 slates from each environment.

The number of slates for all types of user responses are also bal-

anced similar to that of real-world datasets. The user and item

embeddings are assumed explicit and free to use in the training of

the recommendation model. Here we expect readers to distinguish

these simulations from those used in Reinforcement Learning (RL)-

based recommendation models, because the generative model does

not interact with the simulated environment for rewards during

training. In other words, the generative model is training offline

and the simulators are only used for evaluation purposes.

4.3 Model Specification

We denote our two-step generative process as Pivot-CVAE. For

Pivot-CVAE model, perturbation of 𝑑1 can be applied either on

training phase or inference phase, inducing 4 possible variations:

where łGTž represents that the model uses Ground Truth item dur-

ing training, łPIž represents that the model uses Pivot Item during

inference, and łSž means the item applies perturbation. For all per-

turbation, we adopt sigmoid dot-product between item embeddings

as similarity and sample according to multinomial distribution so

that it can capture user interests.

Baselines:We include the List-CVAEmodel [28] as an example

of VAE and build its non-greedy version (denote as Non-Greedy

List-CVAE) that conducts post-generation perturbation. That is,

after the generation of the slate, the item 𝑑1 (in the same position

as the pivot of Pivot-CVAE) is perturbed by sampling from D.

Again, we apply sampling based on multinomial distribution of

sigmoid dot product similarity. We also include biasedMF [31] and

NeuMF [21] as representatives of discriminative rankingmodels. In

order to engage generative recommendations that can explore items

other than the top items, we extend these discriminative methods

into Non-greedy MF/NeuMF by applying the same perturbation

method on 𝑑1 as that in Non-greedy List-CVAE and Pivot-CVAE. To

compare the item variance with intra-slate variance, we include the

widely adopted MF-MMR [10] as a representative diversity-aware

method. It re-ranks the items proposed by the pre-trained biased
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MF model based on the following modified score:

score(𝑑) = 𝜆 sim(𝑑, 𝑗) + (1 − 𝜆)max
𝑑𝑖 ∈𝒔

sim(𝑑𝑖 , 𝑑)

where slate 𝒔 starts from an empty set and choose the item with

the best MMR score in each step until the slate size is 𝐾 . sim(𝑑, 𝑗)

represents the item’s original ranking score given by the base MF

model, and sim(𝑑𝑖 , 𝑑) is the item’s similarity to the 𝑖-th item that

has already been added to the list 𝒔.

In our experiment, we adopt two-layered network with 256 di-

mensional hidden size for each encoder, decoder, 𝑃𝜃 (𝑑1 |𝒛, 𝒄), the

slate completion model 𝑃𝜃 (𝑑2, . . . , 𝑑𝐾 |𝑑1, 𝒛, 𝒄), and the MLP compo-

nent in NeuMF. In terms of the performance of CVAE-based models,

we found that it is relatively insignificant to change the width or

depth of the encoder and decoder network as long as they are large

enough. The user and item embedding size for all datasets and

simulations are fixed to 8, and the size of 𝒛 is set to𝑚 = 16. The

slate size is 𝐾 = 5, which means the size of the condition input 𝒄

of CVAE-based model is 𝐾 + 1 = 6 (without user condition) as de-

scribed in the first paragraph of section 3. All models are optimized

by Adam with stochastic mini-batches (batch size of 64), and we use

grid search to find the best learning rate (0.0001 for List-CVAE and

Pivot-CVAE, 0.0003 for MF and NeuMF) and weight decay (0.0001

for all models). For MF and NeuMF, we follow the standard LTR

paradigm with point-wise binary cross-entropy loss and assign 2

random negative samples of each record to optimize these models

until their ranking performance converges in the validation set. For

MF-MMR, we use sigmoid dot-product as item similarity and set

𝜆 = 0.5. During training of generative models, the softmax function

on each slot in a slate is associated with 1000 negative samples for

Yoochoose, and 100 negative samples for MovieLens and simulation

environments.

4.4 Evaluation Protocol

For all datasets, we randomly split them into train, validation, and

test sets following the 80-10-10 holdout rule. Andwe run each exper-

iment five times to obtain the average performances. We consider

two major evaluation metrics based on interactive environment

𝑅(𝒓 |𝒔): slate accuracy and slate variation. And for the illustration

of why ranking metrics on test set is invalid for evaluation of gen-

erative models, we further include discriminative ranking metrics.

Slate AccuracyMetric: The primary metric, following the eval-

uation setting of [28], is the Expected Number of Clicks (ENC) which

is calculated as:

E

[
𝐾∑

𝑘=1

𝑟𝑘

]
=

∑

𝒔∈D𝐾

𝑃 (𝒔)E

[
𝐾∑

𝑘=1

𝑟𝑘 |𝒔

]

where 𝒓𝑘 |𝒔 is a random variable modeled by 𝑅(𝒓 |𝒔), and 𝑃 (𝒔) is the

probability of generating 𝒔. Similar to the variation evaluation de-

scribed in section 3.2, we can approximated this metric by sampling

techniques. This metric is exactly the ultimate goal of the opti-

mization and does not involve any test set compared to traditional

ranking metrics. For simulation, combining Eq. (9), it becomes:

E

[
𝐾∑

𝑘=1

𝑟𝑘

]
=

∑

𝒔∈D𝐾

𝑃 (𝒔)
∑

𝑑𝑘 ∈𝒔

I(𝑑𝑘 , 𝑗)

And for real-world dataset, we train 𝑅(𝒓 |𝒔) (𝑅(𝒓 |𝒔, 𝑢) if user IDs are

presented) with point-wise binary cross entropy minimization.

Slate Variation: This metric reveals the severance of the łover

concentrationž in RCD and the generation pitfall of limited slate

prototypes. As described in section 3.2, we use total item variance

and intra-slate variance metrics in our evaluation. Notably, the

variance of 𝒛 directly models the slate variance, but it is unique in

VAE-based generative models. In order to form comparison with

non-VAE models, we use item Coverage [19] as the item variance

metric and Intra-List Diversity (ILD) [49, 50] as an approximation of

the intra-slate variance. Item coverage estimates the proportion of

unique items inD that can appear after several times of generations.

Obviously, LTR models are deterministic so will always cover only

5/|D| of the items without perturbation. Intra-list diversity is based

on Intra-List Similarity (ILS) [50]:

ILD = 1 − ILS(𝒔) = 1 −
∑

𝑑𝑖 ∈𝒔

∑

𝑑𝑙 ∈𝒔
𝑑𝑙≠𝑑𝑖

𝑔(𝒗⊤𝑖 𝒗𝑙 )

where the similarity measure 𝑔 between 𝑑𝑖 and 𝑑𝑙 in the slate is

based on the dot product of their item embeddings.

Ranking Metrics: We agree with [28] that it is inadequate

to use traditional offline ranking metrics to evaluate generative

models, as we will discuss in section D.1, these metrics behave

differently on a test set compared to that on a interactive user

response environment. Even though, it is still reasonable to compare

these metrics among generative models. Specifically, we calculate

slateHit Rate and slate Recall considering each slate as a ranking list.

It is considered as a łhitž if an item in the ground truth slate with

positive feedback is recommended. And the slate recall considers

each slate as a user history instead of the combined user history

across slates. Note that in Yoochoose and ML, user identifiers are

absent, so we assume a universal user for all slates during training.

In summary, we conduct two types of evaluation: 1) recommen-

dation performance (slate accuracy and variance metric) on 𝑅(𝑟 |𝑠)

as main evaluation, and 2) ranking metric on the test set. Due to

the stochastic nature of generative models (List-CVAE, Pivot-CVAE,

and all Non-greedy models), the evaluation of each metric is calcu-

lated based on 𝑁 sampled outputs (correspond to section 3.2). Note

that 𝑁 cannot be too small or else it will not provide accurate and

stable estimation of the true value. In the meantime, it can neither

be too large, otherwise the model would exhibit indistinguishably

high item coverage (i.e. it may simply generate all items inD given

sufficient number of samples).

5 RESULTS AND DISCUSSIONS

5.1 The Reconstruction-Concentration Dilemma

We consider the search space of 𝛽 ∈ [0.00001, 30.0] (chosen uni-

formly on log 𝛽 space) and for each setting we train List-CVAE and

all Pivot-CVAE models until convergence of ENC on 𝑅(𝒓 |𝒔). When

evaluation, we generate 𝑁 = 500 slates from each trained model

and calculate the average as described in section 4.4. In Figure 3,

we plot the RCD pattern of List-CVAE on Yoochoose dataset, and

we have observed the same pattern in MovieLens 100K and all

simulation environments.
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Figure 2: The slate encoding TSNE plots of List-CVAE on Yoochoose. The first plot correspond to over-reconstruction case, the

last corresponds to over concentration case, and the middle plots correspond to the łelbowž case.
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Figure 3: Training loss behavior (left) and recommendation

performance (right) of RCD on the Yoochoose Data. Each

point in the left panel represents the average result of slates

in one training epoch of a model. Each point in the right

panel represents a certain generated slate. Here, we use ILD

as slate variation, ENC as accuracy metric.

In cases where 𝛽 is small, CVAE becomes biased towards learning

the reconstruction term of Eq. (1) as illustrated by the yellow dot-

dashed circle in the left subplot of Figure 3. And because of the

subdued regularization from the KL term, the encoding distribution

of 𝒛 becomes less aligned with that of the predefined prior. When

setting the prior 𝑃𝜃 (𝒛 |𝒄) as isotropic standard Gaussian, we observe

that the means of the inferred 𝒛 are often significantly deviated from

0 and the variances var(𝒛) are far from 1. Though it successfully

learns and generates the slates in the dataset during training, there is

no guarantee on the effectiveness of the sampled 𝒛 during inference.

In other words, the distribution of generated slates is close to a

random selection on the observed dataset. As shown in the yellow

dot-dashed circle in the right subplot of Figure 3, we observe low

ENC and high variance during inference.

On the contrary, in the over-concentration case where 𝛽 is rather

large, the KL term plays a more important role in the learning. The

slate encoding 𝒛 indeed is more aligned with the prior, ensuring

the sampling effectiveness, and consequently able to generate satis-

factory slates during inference. Yet, it is less capable of encoding

information that is necessary to reconstruct the slates. When the

model learns that 𝒛 is reluctant to encode corresponding slates, the

generator tends to ignore 𝒛 and focuses on the condition 𝒄 . Since

𝒄 alone does not contain any variational information about slates,

the model will only be able to output several biased łslate proto-

typesž (as illustrated in Appendix B, second row of Figure 6). An

alternative analysis of the slate encoding 𝒛 of List-CVAE is given in

Figure 2. It shows that with large 𝛽 , slate encoding becomes disjoint

according to the ground truth number of clicks, which means that

slate encoding tends to gather around its corresponding prototype

given by the prior. This is undesirable since the model cannot infer

slates outside the cluster, which results in the lack of variety in

recommendations.

Besides, we notice that in the training data a lot of repeated

clicks appear in the click and/or purchase sessions in Yoochoose

data. This makes the RCD problem even worse since the same item

is repeatedly recommended even within the same slate, inducing

low intra-slate variance. We observed that RCD exists even with

𝛽-annealing [5], disabled condition (reduce CVAE to VAE), and

constrained variation (only fix the variation of 𝑧, but not the mean).

These observations indicates that RCD problem may exist for a

broad range of generative models.

5.2 The Narrow łElbowž of CVAE

Though neither of the extremes appears to be a good choice for

recommendation, we find that there exists a very narrow region in

between, where models can provide feasible outputs. In Figure 4, we

show case the results of all metrics on ML(No User) data for gener-

ative models across different 𝛽 ∈ [0.00001, 10.0]. X-axis represents

the setting of 𝛽 and note that results for different 𝛽s correspond

to different models that are separately trained and evaluated. For

ENC and ILD metrics, we use box plot to better demonstrate the

distribution of generated slates.

We summarize three trends of model behavior when increasing

the value of 𝛽 as follows:

• For model training, the converged reconstruction loss gets

worse while the KLD loss gets better;

• When inference, the accuracy measure ENC starts to boost

but the variation metric of the generated slates drops;

• 𝒛 starts to show clustering behavior under the regulating

prior and the clusters will become crisper along with the

transition as shown in Figure 5.

This transitional behavior indicates that models in this interme-

diate region can to some extent cover the variety of slates in the

data while provide moderate accuracy performance. To better show

the detailed transitional behavior of the feasible region, we include

a more fine-grained search space for 𝛽 ∈ [0.001, 0.01] and highlight

it with shaded green in Figure 4. However, in the experiment of

both real-world datasets and all simulation datasets, we found that

this transition happens within a very small region (at most 30% of

the log 𝛽 search space or equivalently 2% of the 𝛽 search space),

while the search space in our experiment is 𝛽 ∈ [0.00001, 30.0]
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Figure 4: Performance on ML (No User) data. łlistcvaewith-

priorž represents the List-CVAE and łng_listcvaewithpriorž

corresponds to the Non-Greedy List-CVAE.

Additionally, we observe that this transitional region consistently

gives good test set ranking performance (both hit rate and recall)

compared to other choices of 𝛽 . The two extreme cases outside the

łelbowž region do not always reveal a decreasing hit rate and an

increasing recall on the test set as in Figure 4, but the best ranking

performance usually appears in one of the two sides. Intuitively, the

generative model should be able to maximize the likelihood of the

test set in addition to the training set. Following the same derivation

of Eq.(1), this would require both the ability to reconstruct the

slate information and the ability to satisfy the constraint. This can

only be observed in this transitional region if the slate variation is

not enforced, since the two extremes only possess one of the two

characteristics. Note that this ranking performance can only serve

as indicators to compare generative models, and it is incomparable

between deterministic ranking models and stochastic generative

models. As we will discuss in section D.1, the stochastic generation

process explores and proposes various good slates in the view of

the user 𝑅(𝒔 |𝒄), and may not necessarily pin-point the data in the

test set thus it is typically not favored by this kind of metrics.

5.3 Controlling Slate Variation

We present the results of ENC and variance in Table 2. Generative

models with 𝛽 = 1.0 are chosen as representatives of the large-𝛽

case, since we want to observe the improvement of slate variance

when models are over-concentrated. Generative models with small

𝛽 (described in section 5.1) and post-perturbation methods that

change more than one item cannot provide satisfactory user re-

sponse, so they are not included in the comparison. We only present

results of datasets with user IDs (ML (User) and all simulation envi-

ronments) so that collaborative filtering models like MF and NeuMF

can be compared. The result of each stochastic model (Non-Greedy

models, List-CVAE and Pivot-CVAE models) is calculated by the

Table 2: Model Performance on User Feedback 𝑅(𝑟 |𝑠) of

datasets with user IDs. All results are significant (𝑝 < 0.05)

and the overall best are the bold scores while the best among

generative models are underlined.

ML(User) URM_P
URM_P_MR
(𝜌=0.5)

URM_P_MR
(𝜌=5.0)

A: Expected Number of Click (ENC)

MF 3.246 3.353 3.870 4.961
NeuMF 3.197 3.344 3.810 4.938
MF-MMR 2.400 3.243 3.725 4.617

Non-Greedy MF 2.950 3.315 3.755 4.869
Non-Greedy NeuMF 3.020 3.303 3.730 4.819

List-CVAE 3.579 3.237 3.924 4.971

Non-Greedy List-CVAE 3.285 3.262 3.883 4.777
Pivot-CVAE (SGT-PI) 3.376 3.274 3.934 4.944
Pivot-CVAE (GT-SPI) 3.252 3.226 3.711 4.622
Pivot-CVAE (SGT-SPI) 3.152 3.270 3.816 4.704

B: Item Coverage

MF 0.003 0.002 0.002 0.002
NeuMF 0.003 0.002 0.002 0.002
MF-MMR 0.003 0.002 0.002 0.002

Non-Greedy MF 0.142 0.082 0.082 0.080
Non-Greedy NeuMF 0.141 0.082 0.081 0.080

List-CVAE 0.004 0.030 0.011 0.005

Non-Greedy List-CVAE 0.139 0.106 0.088 0.084
Pivot-CVAE (SGT-PI) 0.071 0.065 0.014 0.005
Pivot-CVAE (GT-SPI) 0.250 0.235 0.180 0.227
Pivot-CVAE (SGT-SPI) 0.144 0.097 0.090 0.083

C: Intra-List Diversity (ILD)

MF 0.206 0.031 0.035 0.036
NeuMF 0.694 0.300 0.534 0.779
MF-MMR 0.287 0.230 0.193 0.227

Non-Greedy MF 0.545 0.515 0.231 0.126
Non-Greedy NeuMF 0.836 0.576 0.644 0.827

List-CVAE 0.178 0.836 0.407 0.524

Non-Greedy List-CVAE 0.428 0.864 0.572 0.664
Pivot-CVAE (SGT-PI) 0.486 0.869 0.451 0.632
Pivot-CVAE (GT-SPI) 0.725 0.945 0.740 0.814
Pivot-CVAE (SGT-SPI) 0.551 0.856 0.600 0.637

average of all users’ evaluation. Note that when calculating item

coverage and diversity, we consider user-wise instead of the system-

wise metric for these datasets.

The List-CVAE baseline achieves the best ENC on ML(User) and

URM_P_MR environments because it is over-concentrated on the

optimal slate prototype, and CF models achieves the best ENC on

URM_P because of the pointwise environment. All models with

item perturbation (Non-greedy List-CVAE, Pivot-CVAE (SGT_PI),

Pivot-CVAE (GT_SPI), and Pivot-CVAE (SGT_SPI)) exhibit degraded

ENC compared with the original List-CVAE, but significantly im-

proves slate variation (Item Coverage and ILD). Among models us-

ing perturbation, the Pivot-CVAE (GT-SPI) model always achieves

satisfactory accuracy with the best slate variety. We observe this

outstanding performance across all datasets, meaning that sam-

pling the pivot during inference (SPI) will induce more variance

and explore more choices of item combinations than sampling
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Figure 5: The slate encoding TSNE plots of List-CVAE on MovieLens datasets. When user identifier is presented, the encoding

forms more fine-grained clusters that is no longer disjoint between one another.

during training (SGT). Pivot-CVAE (SGT_PI) applies perturbation

during training but not inference, this allows the model to give

more accurate generation with better ENC, but the improvement

of item coverage and ILD becomes limited. Note that it can achieve

a similar ILD with Non-Greedy List-CVAE even if there is a huge

gap between their item coverages, indicating that SGT_PI seeks to

find good slates with sufficient intra-slate variance but tends to be

concentrated slate-wise in exchange for good accuracy. When ap-

plying perturbation on both training and inference as Pivot-CVAE

(SGT-SPI), it has similar performance to Non-Greedy List-CVAE.

As shown in Table 2, generative methods consistently outper-

form MF and NeuMF on variance metrics, and achieves better ENC

on all datasets except for URM_P where the environment is point-

wise. This indicates that the user responses of real-world datasets

like ML(User) are closer to URM_P_MR, which contain intra-slate

features such as item relations, rather than URM_P. Additionally,

Non-Greedy MF/NeuMF can improve the item coverage of these

LTR models to the level of Non-Greedy List-CVAE baseline (still

worse than Pivot-CVAE (GT-SPI)) and Non-Greedy NeuMF even

occasionally achieves better ILD performance than Pivot-CVAE

(GT_SPI). However, they achieve this with greater sacrifice on the

ENC. On the other hand, MF-MMR is able to increase ILD, but its

performance is worse than generative models on all metrics. More-

over, it also shows that a model that improves intra-slate variance

does not necessarily improve the total item variance.

5.4 Personalization Improves Variance

Different fromYoochoose andMovieLens (NoUser) Data, theMovie-

Lens (User) and our simulation environments include user ID in the

constraints in addition to the ideal response, allowing the model

to learn personalized preference of slates. We plot the distribution

of 𝒛 (of List-CVAE) in Figure 5 to show their difference in over-

concentration case. For generative models trained with large 𝛽 ,

instead of having disjoint slate encoding clusters for each type of

user response, the presence of user ID in the constraint will guide

the model to learn a set of more fine-grained clusters, each of which

corresponds to a user. Note that the same user may have different

types of user responses, and a typical user that usually gives a cer-

tain type of response also has a higher chance of giving responses

of similar types (e.g., a user frequently clicks everything may also

frequently click 𝐾 − 1 items). Consequently, user clusters become

closer if they give similar types of response and closer response

types become partially mixed with each other because of the com-

mon users, thus forming a topologically sorted chain in the space,

as shown in the right most panels in the first row of Figure 5. This

property will contribute to the total item variation of the overall

system across users, but in a personalized view, the concentration of

slate still exists. As given in Table 2-A, the user-wise item coverage

of List-CVAE is close to that of discriminative ranking models.

6 CONCLUSION AND EXPECTATIONS

In this paper, we show that generativemodels for slate recommenda-

tion tasks may fall into the Reconstruction-Concentration Dilemma

(RCD), where only a narrow middle region can produce effective

recommendations. We point out that personalization or applying

perturbation can enforce variation on the over-concentration case

of the dilemma but have limitations. By separating a pivot selec-

tion phase from the generation process, we propose Pivot-CVAE

mode that offers better control of the slate variation by pertur-

bation before the generation. Our pivot-based approach and the

variation evaluation framework can be extended to a wider scope

of stochastic generation models such as Generative-Adversarial

Networks (GAN) [45], which we will explore in the future. Besides,

we also find it useful to construct a flexible and comprehensive

user-response simulation framework, not only for the purpose of

recovering a realistic recommendation environment but also for

the need of generating unseen user-item interactions for model

training and evaluation, which is essential for generative models as

well as causal [4, 24, 34] and RL-based models. We will extend our

framework for training and evaluating these models in the future.
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APPENDIX

A POST-GENERATION PERTURBATION

Given a slate (of size 5) and its observed labels (#click) in data, we

choose 𝑎 numbers of its items randomly and apply perturbation

to observe how much the ground-truth user response distribution

𝑅(𝑟 |𝒔) is affected. We present the result of the entire Yoochoose

data (including val and test) in Figure 7. Each row corresponds

to slates with certain observed label (#click), and each column

corresponds to the number of perturbed item 𝑎. In each subplot,

the 𝑥-axis corresponds to the ground truth expected user response

𝑅(𝑟 |𝒔) (from pre-trained model if Yoochoose/MovieLens dataset,

and from simulation if URM-based environments), and the 𝑦-axis

corresponds to the frequency/density of slates. As shown in the

first column where no perturbation is involved, 𝑅(𝑟 |𝒔) is usually

very close to the observed label. However, as given by the second

column from left, changing merely a single item has already caused

a significant deviation of distribution from that of the original slates,

especially for slates with ideal condition 𝒓∗ (the bottom row). And

perturbation of 3 items is already inducing a distribution close to

that of random slates (the rightmost column). We also observed

this substantial reduction in MovieLens and simulation data. As

shown in table 2, simply applying post-generation perturbation on

a given slate without considering the context of the slate neither

achieves the best ENC nor the best variation.

B MORE ON RCD

The detailed view of the reconstruction behavior of List-CVAE on

the entire Yoochoose data is given by Figure 6. The same pattern

also appears on MovieLens 100K. Each subplot gives the result of a

List-CVAE model with certain 𝛽 , the𝑦-axis represents the predicted

user response 𝑅(𝒓 |𝑠) of the original slate and the 𝑥-axis represents

𝑅(𝒓 |̂𝑠) of the reconstructed slates. The reconstruction behavior on

the dataset reveals its performance of inferring the observed dataset

(including test set), which also helps identifying the RCD. Slates

with the same observed #click have the same color, so ideally the

slates with the same color should be somewhere close to the location

[#click, #click]. We observe that the over-reconstruction happens

when 𝛽 ≤ 0.003 (first three subplots), and the more distinguishable

diagonal line in the plot with 𝛽 = 0.0003 indicates a more severe

reconstruction overfitting. The over-concentration happens when

𝛽 > 0.015, and the reconstructed slates are typically gathered to

the very point where the prototype slates are. This means that

the decoder always tends to generate the same slate based only

on the given constraint. Finally, the łelbowž transition between

these two extreme cases happens in a narrow region around 0.01,

where we observe several łprototypesž (the clustered vertical lines

of each color) in each response group. In this region, the model

shows moderate concentration behavior, but the resulting slates

may still cover some degree of variance.

C SLATE RESPONSE DISTRIBUTION

The resulting slate response distribution of Yoochoose data and

MovieLens 100K data are similar, and we show the later in Figure

8. Y-axis represents the frequency and X-axis correspond to the

ground truth response 𝒓 of slates. The label of X-axis is obtained
by considering each 𝒓 as a binary number and expressing it as

integer. For example, user response [0, 0, 0, 0, 1] → 12 → 110 and

[1, 1, 1, 1, 0] → 111102 → 3010 where the subscript 2 and 10 means

binary and decimal representation of numbers.

D DESIGN OF SIMULATION

Basic User Response Model (URM): We assume that the basic

interaction between users and items follow a user interest model,

which is a biased matrix factorization model[31]. Each item 𝑑𝑖 ∈ D

is associated with a vector 𝒗𝑖 ∈ R𝑚 , where 𝑚 is the embedding

dimension. Each user 𝑗 is assigned with a vector of interest 𝒖 𝑗 ∈ R
𝑚 .

To find realistic settings, we first observe the distribution of user

embeddings, item embeddings, user biases, and item biases in pre-

trained 𝑅(𝒓 |𝒔) of MovieLens dataset, then use the same mean and

variance to randomly sample each 𝒗𝑖 , 𝒖 𝑗 , user bias 𝑏
𝑢
𝑗 , item bias 𝑏𝑣𝑗 ,

and global bias 𝑏. And the user’s initial interest in 𝑑𝑖 is given by:

IURM (𝑑𝑖 , 𝑗) = 𝑔(𝒖𝑇𝑗 𝒗𝑖 + 𝑏
𝑢
𝑗 + 𝑏

𝑣
𝑖 + 𝑏)

where 𝑔 is a Sigmoid function. This basic model assumes indepen-

dent point-wise interaction for each user-item pair and no other

effect from the slate context.

Adding Positional Bias (URM_P): Items appeared at the pre-

vious positions of the slate are assumed to have a higher chance of

receiving positive feedback than those in later positions. The reason

for this design is that users may gradually lose their patience when

further browsing the items [26]. In our setting, we first employ

an average positional offset 𝒃𝑝 = [0.2, 0.1, 0.0,−0.1,−0.2]. And for

each user, we draw personalized positional bias B( 𝑗) ∼ N (𝒃𝑝 ,𝝈2
𝑢 )

where the variance 𝝈2
𝑢 = 0.2. Then the final probability of click:

IURM_P (𝑑
𝑖 , 𝑗) = clip

(
IURM (𝑑𝑖 , 𝑗) + 𝜆B( 𝑗)𝑘 , 0, 1)

)

where 𝜆 (set to 1.0 during experiment) controls how significant

is the impact of positional bias on the user responses. The clip

function ensures that the user’s interest is within [0, 1].

Adding Item Interactions (URM_P_MR): In [28], the au-

thors assumed that item interactions are combinations of binary

relations. Here we use a simple and easy-to-control multi-item re-

lation model: First assume that a user’s attention is altered when

she sees the overall features of the slate:

Atn(𝒔, 𝑗) = 𝑔

(( 1
𝐾

∑

𝑑𝑖 ∈𝑠

(𝒗𝑖 )
)
⊙ 𝒖 𝑗

)

where ⊙ denotes element-wise multiplication. Then the resulting

attention is applied to each item to obtain the excursion:

M(𝒔, 𝑗)𝑖 = Atn(𝒔, 𝑗)𝑇 𝒗𝑖

Add up everything so far gives the final probability of click:

IURM_P_MR (𝑑
𝑖 , 𝑗) = clip

(
IURM (𝑑𝑖 , 𝑗) + 𝜆B( 𝑗)𝑘 + 𝜌M(𝒔, 𝑗)𝑖 , 0, 1

)

where coefficient 𝜌 is introduced to control the significance of

the item relation term. Though we found these simulation settings

sufficient for our study, one may sue for more realistic and advanced

simulation like [25] as complementary approaches.
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Ground 

Truth

#click

Figure 6: The reconstruction behavior of RCD on the entire Yoochoose dataset (including train, val, and test).

Figure 8: Slate response distribution of the preprocessed

MovieLens 100K dataset with slate size 𝑘 = 5.

Table 3: Infeasible Evaluation on Test Set, see section D.1

ML(User) URM_P
URM_P_MR
(𝜌=0.5)

URM_P_MR
(𝜌=5.0)

D: Slate Hit Rate

MF 0.0330 0.0069 0.0071 0.0092

NeuMF 0.0272 0.0089 0.0088 0.0068

MF-MMR 0.0092 0.0057 0.0078 0.0070

Non-Greedy MF 0.0283 0.0063 0.0072 0.0087

Non-Greedy NeuMF 0.0233 0.0077 0.0080 0.0072

List-CVAE 0.0041 0.0071 0.0079 0.0093

Non-Greedy List-CVAE 0.0056 0.0068 0.0078 0.0090

Pivot-CVAE (SGT-PI) 0.0043 0.0071 0.0069 0.0078

Pivot-CVAE (GT-SPI) 0.0131 0.0062 0.0072 0.0080

Pivot-CVAE (SGT-SPI) 0.0043 0.0070 0.0072 0.0074

E: Slate Recall

MF 0.0090 0.0021 0.0024 0.0034

NeuMF 0.0079 0.0029 0.0029 0.0024

MF-MMR 0.0032 0.0018 0.0026 0.0025

Non-Greedy MF 0.0078 0.0019 0.0025 0.0032

Non-Greedy NeuMF 0.0072 0.0025 0.0026 0.0026

List-CVAE 0.0013 0.0024 0.0029 0.0038

Non-Greedy List-CVAE 0.0021 0.0022 0.0027 0.0035

Pivot-CVAE (SGT-PI) 0.0014 0.0023 0.0024 0.0026

Pivot-CVAE (GT-SPI) 0.0038 0.0020 0.0024 0.0028

Pivot-CVAE (SGT-SPI) 0.0013 0.0023 0.0025 0.0028

0 click

1 click

2 click

3 click

5 click

4 click

Original

Slate

Perturb 

1 item

Perturb 

2 items
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Figure 7: User response distribution under perturbation.

D.1 Stochastic vs. Deterministic

Compare to generative models, discriminative ranking models are

deterministic and cannot explore the variety of slates, thus they

are favored by ranking metrics on offline test set. We present the

ranking performance on test set in Table 3-D and 3-E. For most

datasets, different from the łground truthž user response evaluated

by environment 𝑅(𝑟 |𝑺), generative models (CVAE-based models)

are stochastic and tend to explore more choices of good but unseen

slates beyond the limited observation of the test set. On the other

hand, ranking models like MF and NeuMF tend to focus on the best

point that satisfies users the most, and perturbation of just one item

does not severely harm the ranking metrics of the whole slate since

the remaining items are also individually accurate. Interestingly,

the gap between deterministic and stochastic models becomes less

observable when we increase the proportion of item relations in

the slates (URM_P → URM_MR), and generative models even start

to outperform MF and NeuMF when 𝜌 = 5.0. This shows that

generative models are able to model whole-slate patterns for which

MF and NeuMF often fail to learn.
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