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ABSTRACT
Many of the traditional recommendation algorithms are designed
based on the fundamental idea of mining or learning correlative
patterns from data to estimate the user-item correlative preference.
However, pure correlative learning may lead to Simpson’s para-
dox in predictions, and thus results in sacrificed recommendation
performance. Simpson’s paradox is a well-known statistical phe-
nomenon, which causes confusions in statistical conclusions and
ignoring the paradox may result in inaccurate decisions. Fortu-
nately, causal and counterfactual modeling can help us to think
outside of the observational data for user modeling and personal-
ization so as to tackle such issues. In this paper, we propose Causal
Collaborative Filtering (CCF) — a general framework for model-
ing causality in collaborative filtering and recommendation. We
provide a unified causal view of CF and mathematically show that
many of the traditional CF algorithms are actually special cases of
CCF under simplified causal graphs. We then propose a conditional
intervention approach for𝑑𝑜-operations so that we can estimate the
user-item causal preference based on the observational data. Finally,
we further propose a general counterfactual constrained learning
framework for estimating the user-item preferences. Experiments
are conducted on two types of real-world datasets—traditional and
randomized trial data—and results show that our framework can im-
prove the recommendation performance and reduce the Simpson’s
paradox problem of many CF algorithms.

CCS CONCEPTS
• Information systems → Recommender systems; • Comput-
ing methodologies →Machine learning.

KEYWORDS
Collaborative Filtering; Causal Analysis; Counterfactual Reasoning;
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1 INTRODUCTION
Recommender systems are important and valuable tools to pro-
vide sophisticated services for many Web-based services such as
e-commerce, social networks and online media systems. Collab-
orative Filtering (CF) [11, 43] algorithms, among others, are fun-
damental algorithms that support the underlying mechanism of
recommender systems.

Most of the existing CF models are developed based on associa-
tive user-item preference learning. However, associative learning
may be vulnerable to the Simpson’s paradox [17, 35] and thus leads
to sacrificed recommendation performance. Simpson’s paradox
refers to the phenomenon that the statistical conclusion from the
total observational data disagrees with that from the sub-groups of
data [17]. Take Table 1 as a toy example, for two candidate items 𝑣1
and 𝑣2, we have the feedback (e.g., like or dislike) of the users who
interacted with 𝑣1 or 𝑣2, assuming that there are 100 users for each
item. Suppose the 100 users can be divided into two groups 𝐺1 and
𝐺2, e.g., based on gender, age or income. For each group, we have
the percentage of users in the group who like the corresponding
item, and we can also calculate the overall percentage of users who
like each item. We can see that it is possible that 𝑣2 is more likely
to be recommended than 𝑣1 according to the data of each group,
but 𝑣1 is more likely to be recommended than 𝑣2 according to the
overall data, leading to the Simpson’s paradox.

Such Simpson’s paradox also exists for real-world data. Follow-
ing the paradox detection method in [17], we show observations
on the MovieLens-100K data. For each user, we rank the user’s
interacted items according to ratings and each user’s top-𝐾 items
are considered recommended by the user. Figure 1(a) shows the
percentage of item pairs that have paradox among all possible item
pairs in the observational data, with 𝐾 ranging from 10 to 200 and
users grouped by gender or age (age threshold is 35). We can see
that a large percentage of item pairs results in Simpson’s paradox.

Additionally, such paradox could be learned into associative CF
models which leads to paradoxes in the final recommendation list.
Take Matrix Factorization (MF) [37] on MovieLens-100K as an ex-
ample. Based on the full user-item ranking score matrix completed
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Item 𝑣1 Item 𝑣2

User Group𝐺1 62.5% (50/80) 66.6% (20/30)
User Group𝐺2 50.0% (10/20) 54.3% (38/70)

Overall 60.0% (60/100) 58.0% (58/100)

Table 1: A toy example of Simpson’s paradox in recommen-
dation, where two candidate items 𝑣1 and 𝑣2 are considered.
(𝑥/𝑦) represents that there are 𝑥 users like the item within 𝑦
users who have interacted with the item.

by the well-trained MF model, each user recommends his or her
top-𝐾 ranked items and for each item we randomly sample 100
users. Figure 1(b) shows the percentage of item pairs that have
paradox with 𝐾 ranging from 10 to 200, which indicates the ex-
istence of Simpson’s paradox in the final recommendation lists.
As a result, Simpson’s paradox exists in both observational data
and the predicted data, which may mislead the recommendation
results. Thus mitigating Simpson’s paradox will help improve the
recommendation performance (we will show that in Section 5).

One important approach to mitigating Simpson’s paradox is
causal inference and 𝑑𝑜-operations [35]. In this paper, we propose
a causal collaborative filtering (CCF) model as a simple and prin-
cipled framework that seamlessly integrates causal inference and
recommendation for reduced paradox and better recommendations.

Intuitively, estimating the user-item causal preference can be
interpreted as answering a what if question: what would be the
user’s preference on an item if we intervene to recommend the item
to the user [55]. Using standard mathematical language of causal
inference [35], the above what if question can be represented as
𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)), where 𝑢, 𝑣 is a user-item pair and 𝑦 is the preference
score to be estimated for the pair, e.g., 𝑦 = 1 for likes and 0 for
dislikes. In the CCF framework, 𝑑𝑜-operation is used to represent
the causal preference if we intervene to recommend item 𝑣 instead
of passively observing item 𝑣 in training data. More interestingly,
we show that traditional CF models are actually special cases of
CCF under simplified causal graphs (Figure 2), and CCF is a general
framework for casual learning in recommendation which can be
applied over various causal graphs.

Except for the above conceptual contribution, this work also pro-
vides technical contributions. More specifically, a great challenge
is how to estimate 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)). In this work, we propose a con-
ditional intervention approach to estimating 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) based
on observational data. Specifically, we adopt the causal graph in
Figure 2(d) for conditional intervention, which considers the user
interaction history 𝑋 for mediator analysis. Moreover, solving the
conditional intervention requires counterfactual reasoning, and
we propose a counterfactual constrained learning framework for
counterfactual reasoning in both discrete and continuous space to
estimate the causal preference 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)). We conduct extensive
experiments on real-world datasets. Experimental results show that
CCF reduces Simpson’s paradox and significantly improves the
recommendation performance.

2 RELATEDWORK
Existing literature usually categorizes the recommendation algo-
rithms into three major types: collaborative filtering, content-based
recommendation and hybrid method [1, 18, 70]. Due to the wide
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Figure 1: (a) The percentage of itempairs that have paradox in
the observational data ofMovieLens-100k. (b) The percentage
of item pairs that have paradox on the full user-item ranking
score matrix completed by MF on MovieLens-100K.

scope of literature of recommender systems (RS), it is hardly possi-
ble to cover all of the RS algorithms, so we review some represen-
tative methods based on collaborative filtering in this section, and
a more comprehensive review can be seen in [1, 11, 18, 70].

Collaborative Filtering (CF) [11] is based on a key idea that sim-
ilar users may share similar interests and similar items may be
liked by similar users. Early memory-based CF models—such as
user-based CF [23, 38] and item-based CF [27, 40]—calculate the
similarity between users or items for recommendation based on
pre-defined similarity functions such as cosine similarity. To ex-
tract latent semantic meanings from the matrix, researchers later
explored learned user and item vector representations to calculate
the matching score of each user-item pair for recommendation,
including Latent Factor Models (LFM) such as matrix factorization
[24], tensor factorization [22] and factorization machines [36]. The
development of deep learning and neural networks has further
extended CF. The relevant methods can be broadly classified into
two categories: similarity learning approach and representation
learning approach. The similarity learning approach adopts simple
user and item representations (such as one-hot) and learns a com-
plex matching function (such as a prediction network) to calculate
user-item matching scores [10, 15, 63], while the representation
learning approach learns rich user and item representations and
adopts a simple matching function (e.g., inner product) for efficient
matching score calculation [2, 29, 68, 71, 73]. Another important
direction is learning to rank for recommendation, which learns the
relative ordering of items instead of the absolute scores, such as
Bayesian Personalized Ranking (BPR) [37].

Most existing methods learn correlative patterns from data for
matching and recommendation based on either simple or complex
matching functions. However, advancing from correlative learning
to causal learning is an important problem [35]. The community
has explored causal modeling on several different perspectives. For
example, researchers adopted causal models to generate explana-
tions for recommendation [12, 48, 50], considered fairness under
counterfactual settings [26, 30], corrected data bias for rankings in
search [3, 16, 21, 32, 33, 54], recommendation [7, 28, 42, 44, 53, 55,
57, 58, 72, 74], advertising [67] and evaluating the ranking models
[64], estimated the uplift effect of recommendations [41, 42, 59],
explored data augmentation [56, 65, 69] as well as multimodal in-
formation such as text [60] based on causal methods. Some related
works are proposed to estimate 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) for recommendation
as well, for example, Zhang et al. [72] leverage popularity bias for
recommendation, Xu et al. [62] design a causal model for mitigat-
ing echo chambers while maintaining comparable performance,
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etc. Unlike the existing causal recommendation works, our work
focuses on mitigating Simpson’s paradox.

Simpson’s paradox is a common statistical phenomenon and it
appears in many artificial intelligence applications and real-life
scenarios [31, 51]. This phenomenon was originally observed in
1951 [47] and was later named as the “Simpson’s Paradox”[6]. Simp-
son’s paradox has attracted the attention of many computer scien-
tists in recent years. In general machine learning, existing litera-
ture mainly focuses on detecting Simpson’ paradox automatically
[4, 5, 45, 45, 46, 61]. In recommender systems, Jadidinejad et al. [17]
propose a method to address the Simpson’s paradox in offline eval-
uation. To the best of our knowledge, none of the existing works
aims at proposing models to mitigate Simpson’s paradox in model
prediction for improved recommendation performance.

3 A UNIFIED CAUSAL VIEW OF CF
We provide a unified causal view of collaborative filtering (CF) in
this section. Specifically, we show that the fundamental goal of
many CF algorithms is to estimate the causal effect 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)).
The key difference between various CF models is that they assume
different causal graphs to calculate 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)). When the causal
graph is too simple or even unrealistic, the causal effect will nat-
urally degenerate to association relations that are considered in
traditional CF models. We now show how different CF models fit
into the unified causal view under 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)).

3.1 Non-Personalized Model
Non-personalized recommendation models, such as most popular
recommendation [19], assume a simple causal graph without the
user node, as shown in Figure 2(a). Since user is excluded from
consideration and since item is a root node in the graph, we have
𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) = 𝑃 (𝑦 |𝑑𝑜 (𝑣)) = 𝑃 (𝑦 |𝑣), and 𝑃 (𝑦 |𝑣) naturally repre-
sents the popularity of item 𝑣 in the data.

3.2 Associative Matching Models
Most CF algorithms fall into the user-item associative matching
category. These models assume a causal graph shown in Figure
2(b), where user node 𝑈 and item node 𝑉 constitute a collider to
influence preference node𝑌 . Basically, thesemodels assume that the
appearance of users and items are independent from each other in
observational data (though this may be an unrealistic assumption),
and since both 𝑈 and 𝑉 are root nodes, we have 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) =
𝑃 (𝑦 |𝑢, 𝑣), which can thus be estimated from observational data.

The main difference of various models is how to design the
matching function to estimate 𝑃 (𝑦 |𝑢, 𝑣), e.g., user-based CF assumes
𝑃 (𝑌 = 1|𝑢, 𝑣) ∝ 1

|𝑁 (𝑢 ) |
∑
𝑢′∈𝑁 (𝑢 ) 𝑦𝑢′,𝑣 , where 𝑁 (𝑢) are the neigh-

bours of user 𝑢. Matrix factorization (MF) models, such as [24],
assume 𝑃 (𝑌 = 1|𝑢, 𝑣) ∝ u⊺v or ∝ u⊺v + 𝑏𝑢 + 𝑏𝑣 + 𝑏. Some neural
network-based models such as [10, 13, 63] assume 𝑃 (𝑌 = 1|𝑢, 𝑣) ∝
NN(u, v), where NN is a neural network for similarity matching.
More complex deep representation learning models such as sequen-
tial models [9, 14, 25, 49] and graph-based models [2, 52, 66, 68]
can be represented as 𝑃 (𝑌 = 1|𝑢, 𝑣) ∝ NN(NN(𝑢),NN(𝑣)), where
a neural similarity network NN is applied on top of the neural
representation learning network NN.

Figure 2: Many traditional CFmodels are special cases of CCF
under simplified causal graphs. In the graphs,𝑈 is user, 𝑉 is
item, 𝑋 is user interaction history, 𝑌 is preference score. (a)
Causal graph for non-personalized models. (b) Causal graph
for similarity matching-based CF models. (c) Causal graph
that considers the causality from user to item [7]. (d) Causal
graph used in our framework to demonstrate the idea of CCF,
using user interaction history 𝑋 as a mediator.

3.3 Causal Reasoning Model
Some causal models [7, 20, 44] are aware of the dependencies be-
tween user and item, thus assume the causal graph in Figure 2(c),
which extends Figure 2(b) by removing the independence assump-
tion between user and item. In this case, the 𝑢-specific causal effect
𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) by definition requires interventional reasoning. De-
pending on if or not we have complete control of the recommenda-
tion platform, we have the following two approaches to estimate
𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)).

3.3.1 Direct Intervention Models. If we have complete control
of the recommendation platform or have access to a randomized
treatment dataset where user is randomly exposed to items, then
the straightforward way of estimating 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) is through di-
rect intervention [7, 55, 72]. We refine Figure 2(c) as Figure 3(a) to
show the structural equations 𝑉 = 𝑔(𝑈 ) and 𝑌 = 𝑓 (𝑈 ,𝑉 ), which
represent the two steps of the recommendation pipeline. 𝑉 = 𝑔(𝑈 )
represents the de facto recommendation model in the system that
decides what items are exposed to the user, and 𝑌 = 𝑓 (𝑈 ,𝑉 ) rep-
resents the user’s preference on the exposed item. To estimate
𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)), we resort to the most original definition of interven-
tion to get the manipulated causal graph as shown in Figure 3(b)
[35, p.54]. We thus have 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) = 𝑃𝑚 (𝑦 |𝑢, 𝑣), where 𝑃𝑚 is
the probability distribution according to the manipulated causal
graph. To estimate 𝑃𝑚 (𝑦 |𝑢, 𝑣), we can apply a randomized exposure
policy by either showing random items to users or manipulating
the observational data to simulate a random policy and thus to
implement the independence between𝑈 and𝑉 . This treatment will
help us to collect an unbiased dataset to estimate 𝑃𝑚 (𝑦 |𝑢, 𝑣). More
details can be seen in [7, 55, 72].
3.3.2 Inverse Propensity Scoring (IPS) Models. In many cases,
we do not have complete control of the recommendation platform
or access to the randomized treatment data. The basic idea of in-
verse propensity scoring (IPS) methods is to turn the outcomes of an
observational study into pseudo-randomized trials by re-weighting
the samples [7], so that 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) can be estimated from the
observational data [20, 44]. More formally, according to the rec-
ommendation pipeline shown in Figure 3(a), the observed user
preference 𝑟𝑢𝑣 is considered as 𝑟𝑢𝑣 ∝ 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣))𝑃 (𝑣 |𝑢), which is
the multiplication between the user’s real preference 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣))
and the probability that user 𝑢 had a chance to see the item 𝑃 (𝑣 |𝑢).
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Figure 3: (a-b) Causal graphs before and after manipulation.
(c-d) Reorganize causal graph using𝑈 as exogenous variable.
As a result, we have 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) ∝ 𝑟𝑢𝑣

𝑃 (𝑣 |𝑢 ) , which means that
each example in the observational data boosts its probability by a
factor equal to 1/𝑃 (𝑣 |𝑢), which corrects the observational data by
removing the exposure bias.

4 THE PROPOSED FRAMEWORK
In this section, we will start from the causal graph and then intro-
duce the techniques for estimating 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)), including condi-
tional intervention, counterfactual reasoning, and finally a flexible
counterfactual constrained learning framework that can be applied
on any existing CF model for recommendation.

4.1 The Causal Graph
As mentioned above, in many cases of recommender systems we
want to answer counterfactual questions such as what if an item
had (or had not) been recommended, or what if the user had a
different interaction history. Such imaginary cases constitute the
counterfactual world, in contrast to what happened in the real world.

To enable counterfactual reasoning, we extend the causal graph
from Figure 3(a) to Figure 3(c) to consider user’s interaction histories
𝑋 formediator analysis. Specifically, the casual model includes three
structural equations: (1) 𝑋 = ℎ(𝑈 ), which returns a user’s history
𝑋 . In the most simple case, it can be a database retrieval operation
that returns a user’s interaction history; (2) 𝑉 = 𝑔(𝑈 ,𝑋 ), which is
the already deployed recommendation algorithm of the system that
returns the recommended item 𝑉 based on the user and the user’s
interaction history; (3) 𝑌 = 𝑓 (𝑈 ,𝑉 ), which is the user preference
function that we do not know but we want to estimate.

We should acknowledge that the causal graph in Figure 3(c) is
not a once-and-for-all solution for recommender systems, because
practical systems are very complicated that involve many other
factors. However, we consider this causal graph in the work because
the structural equation 𝑉 = 𝑔(𝑈 ,𝑋 ) is general enough to include a
wide scope of recommendation algorithms, including both sequen-
tial and non-sequential methods. With the help of the causal graph,
our framework aims to estimate 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) for reduced paradox
and enhanced performance, which we will show in the following.

4.2 Conditional Intervention
To estimate 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)), we first identify that {𝑈 ,𝑋 } is a set of
variables that satisfy the backdoor criterion [35, p.61] for the casual
effect 𝑉 → 𝑌 . Since we already conditioned on 𝑈 for personaliza-
tion, the only variable that leads to variations in 𝑉 is user interac-
tion history 𝑋 , as a result, we adopt conditional intervention [35,
p.70][34, p.113] to estimate 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)).

More specifically, the recommendation policy 𝑉 = 𝑔(𝑈 ,𝑋 ) pro-
vides recommendation𝑉 based on the user𝑈 and history𝑋 , written
as 𝑑𝑜 (𝑉 = 𝑔(𝑈 ,𝑋 )). To find out the distribution of the outcome
𝑌 that results from this policy, we seek to estimate 𝑃 (𝑌 = 𝑦 |𝑈 =

𝑢,𝑑𝑜 (𝑉 = 𝑔(𝑈 ,𝑋 ))). We will show that identifying the effect of
such policies is equivalent to identifying the expression for the
(𝑢, 𝑥)-specific effect 𝑃 (𝑌 = 𝑦 |𝑈 = 𝑢,𝑋 = 𝑥, 𝑑𝑜 (𝑉 = 𝑣)) [35, p.71].
𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) � 𝑃 (𝑌 = 𝑦 |𝑈 = 𝑢,𝑑𝑜 (𝑉 = 𝑔(𝑈 ,𝑋 )))
1
=
∑︁
𝑥

𝑃 (𝑌 = 𝑦 |𝑈 = 𝑢,𝑑𝑜 (𝑉 = 𝑔(𝑈 ,𝑋 )), 𝑋 = 𝑥) ×

𝑃 (𝑋 = 𝑥 |𝑈 = 𝑢,𝑑𝑜 (𝑉 = 𝑔(𝑈 ,𝑋 )))
2
=
∑︁
𝑥

𝑃 (𝑌 = 𝑦 |𝑈 = 𝑢,𝑋 = 𝑥, 𝑑𝑜 (𝑉 = 𝑔(𝑢, 𝑥)))𝑃 (𝑋 = 𝑥 |𝑈 = 𝑢)

3
=
∑︁
𝑥

𝑃 (𝑌 = 𝑦 |𝑈 = 𝑢,𝑋 = 𝑥, 𝑑𝑜 (𝑉 = 𝑣)) |𝑣=𝑔 (𝑢,𝑥 )𝑃 (𝑋 = 𝑥 |𝑈 = 𝑢)

4
=
∑︁
𝑥

𝑃 (𝑦 |𝑢, 𝑥, 𝑣) |𝑣=𝑔 (𝑢,𝑥 )𝑃 (𝑥 |𝑢) = 𝐸𝑥 |𝑢 [𝑃 (𝑦 |𝑢, 𝑥, 𝑣) |𝑣=𝑔 (𝑢,𝑥 ) ]

(1)
From the last step in Eq.(1) we can see that the key difference

between the causal model 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) and traditional associative
models 𝑃 (𝑦 |𝑢, 𝑣) is the existence of the conditional probability term
𝑃 (𝑥 |𝑢) in the final step. In step 4, 𝑃 (𝑦 |𝑢, 𝑥, 𝑣) |𝑣=𝑔 (𝑢,𝑥 ) stands for
the preference estimation of the deployed recommendation model
𝑉 = 𝑔(𝑈 ,𝑋 ). Traditional models only consider the real world but
not the counterfactual world, as a result, the conditional probability
𝑃 (𝑥 |𝑢) = 1 for observed user history𝑥 , while for unobserved history
𝑥 ′, 𝑃 (𝑥 ′ |𝑢) = 0. In this case, we see that the summation in step 4 will
only include observed history 𝑥 and thus 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) naturally
degenerates to the original recommendation model 𝑉 = 𝑔(𝑈 ,𝑋 ).

However, the observed history 𝑥 does not mean that the user is
destined to interact with the items in 𝑥—the user just happened to
interact with 𝑥 , i.e., if the user had a chance to be recommended
with different items 𝑥 ′ in the counterfactual world, the user may
also interact with those items, and thus the probability 𝑃 (𝑥 ′ |𝑢) is
not 0. As a result, the calculation of Eq.(1) requires counterfactual
reasoning where the user history had been𝑋 = 𝑥 ′, which is beyond
the observational data 𝑋 = 𝑥 .

4.3 Counterfactual Reasoning
Counterfactual reasoning enables more refined intervention at indi-
vidual level [35, p.78,93]. In this work, the individual level refers to
each user 𝑈 = 𝑢 for personalization purpose. To better understand
this, the causal graph in Figure 3(c) is equivalently transformed
into Figure 3(d), where 𝑈 serves as the exogenous variable. As a
result, counterfactual reasoning is individualized on each user.

To enable counterfactual reasoning to calculate Eq.(1), let’s con-
sider a record (𝑢, 𝑥, 𝑣,𝑦) in the observational data, meaning that
user 𝑢’s real history is 𝑥 , and then the system logged user’s prefer-
ence on item 𝑣 which is 𝑦, e.g., we can consider binary preference
values using𝑦 = 1 for likes and𝑦 = 0 for dislikes, but the framework
can also be applied over multiple preference values. According to
Eq.(1), the user preference estimation 𝑦 = 𝑓 (𝑢, 𝑣) is expressed as

𝑦 = 𝑓 (𝑢, 𝑣) ∝ 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣))

=
∑︁
𝑥̃

𝑃 (𝑦 |𝑢, 𝑥, 𝑣) |𝑣=𝑔 (𝑢,𝑥̃ )𝑃 (𝑥 |𝑢) = 𝐸𝑥̃ |𝑢 [𝑃 (𝑦 |𝑢, 𝑥, 𝑣) |𝑣=𝑔 (𝑢,𝑥̃ ) ] (2)

To distinguish from the single real-world history 𝑥 , we use 𝑥 to
represent any possible user history, including both the real history
𝑥 and possible counterfactual histories 𝑥 ′. Eq.(2) means that the
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Table 2: Different heuristic rules to create counterfactual examples, the corresponding counterfactual question, and some
intuitive toy examples. In the toy examples, the user’s real interaction history 𝑥 includes items 𝑎 𝑏 𝑐, and items at the right side
of the arrow is the counterfactual history 𝑥 ′. Multiple counterfactual histories can be constructed from the real history 𝑥 .

Heuristic Rule Counterfactual Question Toy Example

Keep One (K1) What if the user only interacted with one history item? 𝑎 𝑏 𝑐 → 𝑎; 𝑎 𝑏 𝑐 → 𝑏; 𝑎 𝑏 𝑐 → 𝑐

Delete One (D1) What if the user did not interact with one of the history items? 𝑎 𝑏 𝑐 → 𝑏 𝑐 ; 𝑎 𝑏 𝑐 → 𝑎 𝑐; 𝑎 𝑏 𝑐 → 𝑎 𝑏

Replace One (R1) What if one of the history items were different? 𝑎 𝑏 𝑐 → 𝑎′𝑏 𝑐 ; 𝑎 𝑏 𝑐 → 𝑎 𝑏′𝑐; 𝑎 𝑏 𝑐 → 𝑎 𝑏 𝑐′

estimation of 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) can be achieved by correcting the orig-
inal recommendation algorithm’s estimation 𝑃 (𝑦 |𝑢, 𝑥, 𝑣) |𝑣=𝑔 (𝑢,𝑥 )
using counterfactual histories 𝑥 ′. More specifically, the estimation
for 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) is the expected estimation of 𝑃 (𝑦 |𝑢, 𝑥, 𝑣) |𝑣=𝑔 (𝑢,𝑥 ) ,
where the expectation is taken over all possible histories (including
real and counterfactual histories) when item 𝑣 is recommended.

4.3.1 Generate Counterfactual Examples. Counterfactual rea-
soning requires generating counterfactual examples based on mini-
mal changes [35, p.92]. We start with a heuristic-based approach
for counterfactual example generation and we will generalize to a
learning-based approach in the next section.

We adopt three heuristic rules to generate counterfactual histo-
ries 𝑥 ′ by applying modifications to the real history 𝑥 (Table 2). The
Keep One (K1) rule only keeps one item of the user’s real history,
the Delete One (D1) rule removes one item from the user’s real his-
tory, and the Replace One (R1) rule replaces one item of the user’s
real history with another item. For the R1 rule, depending on how
the item is replaced, we have two variants: R1-random (R1r)—the
item is replaced with a random item, and R1-nearest (R1n)—the
item is replaced with its nearest neighbour based on embedding
similarity. We will introduce more details in the experiments.

4.3.2 Select Counterfactual Examples. Consider the training
example (𝑢, 𝑥, 𝑣,𝑦) where the user’s real history is 𝑥 , and we are
able to generate 𝑚 counterfactual histories {𝑥 ′1, 𝑥

′
2 · · · 𝑥

′
𝑚} using

one of the heuristic rules. Conditional intervention (Section 4.2)
requires 𝑣 = 𝑔(𝑢, 𝑥), i.e., the same item 𝑣 should be recommended
(i.e., within the top-𝑘 recommendation list) by the recommendation
algorithm 𝑔(·, ·) under counterfactual histories (since we are con-
sidering 𝑑𝑜 (𝑣) instead of just 𝑣 in the condition). However, not all
of the counterfactual histories {𝑥 ′1, 𝑥

′
2 · · · 𝑥

′
𝑚} guarantee that item

𝑣 is recommended under the algorithm. As a result, we execute the
recommendation algorithm 𝑔(·, ·) over each counterfactual history
𝑥 ′
𝑖
and obtain the top-𝑘 recommendation list V′

𝑖
= 𝑔(𝑢, 𝑥 ′

𝑖
), where

𝑘 is a hyper-parameter to be tuned (will be introduced in the exper-
iments). If the target item 𝑣 ∈ V′

𝑖
, then we keep the counterfactual

example (𝑢, 𝑥 ′
𝑖
, 𝑣, 𝑦). Suppose 𝑛 of the𝑚 counterfactual histories are

eventually selected, we will have a set of counterfactual examples
{(𝑢, 𝑥 ′

𝑖
, 𝑣, 𝑦)}𝑛

𝑖=1.

4.3.3 Calculate the Expectation. We then calculate 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣))
based on the real observation (𝑢, 𝑥, 𝑣,𝑦) and the counterfactual
examples {(𝑢, 𝑥 ′

𝑖
, 𝑣, 𝑦)}𝑛

𝑖=1 according to Eq.(2). For simplicity, we
consider 𝑃 (𝑥 |𝑢) as a piecewise uniform distribution over the real
and counterfactual histories, i.e.,

𝑃 (𝑥 |𝑢) =
{
𝛼, when 𝑥 = 𝑥

𝛽, when 𝑥 = 𝑥 ′
𝑖
, 𝑖 ∈ {1, 2 · · ·𝑛}

, 𝛼 + 𝑛𝛽 = 1 (3)

where 𝛼 is the probability of the real example 𝑥 , and 𝛽 is the proba-
bility of each counterfactual example 𝑥 ′

𝑖
. Since 𝑥 is already observed,

we apply a higher probability to 𝑥 than 𝑥 ′
𝑖
, i.e., 𝛼 > 𝛽 > 0. Gen-

eralizing to even more complex distributions such as Gaussian or
Gamma distribution will be considered in the future. Then we have:

𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) =
∑︁
𝑥̃

𝑃 (𝑦 |𝑢, 𝑥, 𝑣) |𝑣=𝑔 (𝑢,𝑥̃ )𝑃 (𝑥 |𝑢)

= 𝛼 𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣) + 𝛽
𝑛∑︁
𝑖=1

𝑃𝑔 (𝑦 |𝑢, 𝑥 ′𝑖 , 𝑣)
(4)

where 𝑃𝑔 is the probability estimation of the base recommendation
algorithm 𝑣 = 𝑔(𝑢, 𝑥).

4.4 Counterfactual Constrained Learning
In practical recommender systems, the ranking probability score
𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣) is usually learned by optimizing a loss function 𝐿(𝑔)
such as the rating prediction loss [24] or the pair-wise ranking loss
[37]. As noted before, however, the estimated probability 𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣)
could be unreliable due to unrealistic model assumptions or data
bias. As a result, what we really want is the probability score of
𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) for item ranking. To learn the values of 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)),
we propose a counterfactual constrained learning approach, which
requires the base recommender’s probability estimation 𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣)
to be equal to 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)), and thus we can safely use the learned
𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣) scores for item ranking and recommendation:

minimize 𝐿(𝑔)
s.t. 𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣) = 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) ∀𝑢 ∈ U, ∀𝑣 ∈ V (5)

where 𝐿(𝑔) is the loss function of a base recommendation algorithm
𝑔(𝑢, 𝑥), U is the set of users, andV is the set of items.

Actually, the constraint 𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣) = 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) is naturally
supported by the causal graph (Figure 3(c)). The reason is that in
the graph, both𝑈 alone and {𝑈 ,𝑋 } as a set satisfy the backdoor cri-
terion for 𝑉 → 𝑌 , as a result, we have 𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣) = 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)).
Careful readers may ask if 𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣) = 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)), then why
can’t we just directly use the estimation 𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣) of the base rec-
ommender for recommendation? The reason is that we only have
the accurate 𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣) scores for the observed (𝑢, 𝑣) pairs in the
dataset, which are the already observed user preference (ratings,
clicks, etc.) on the item. These pairs do not need any estimation
and according to the causal graph they can be used as 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣))
because the system already exposed the items to the user and col-
lected the user’s preference. However, recommender system needs
the 𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣) scores for the unobserved (𝑢, 𝑣) pairs to make rec-
ommendations, and these scores need to be estimated using a model.
As discussed before, most traditional CF models assume simplified
causal graphs to estimate 𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣) based on associative learning,
which may lead to unreliable or even biased estimations. As a result,
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we need to explicitly add the constraint to the learning procedure
to make sure 𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣) = 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) is guaranteed for both
observed and unobserved (𝑢, 𝑣) pairs. In the following, we further
derive Eq.(5) to make it learnable.

4.4.1 Counterfactual Learning in Discrete Space. We first pro-
pose a discrete version of the counterfactual constrained learning al-
gorithm for any base recommender, which conducts counterfactual
reasoning in a discrete item space. We already know the expression
for 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) (i.e., Eq.(4)). Using 𝑃 (𝑦 |𝑢, 𝑥, 𝑣) for 𝑃𝑔 (𝑦 |𝑢, 𝑥, 𝑣) for
notation simplicity, the constraint can be written as:

𝑃 (𝑦 |𝑢,𝑥, 𝑣) = 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) = 𝛼 𝑃 (𝑦 |𝑢, 𝑥, 𝑣) + 𝛽
𝑛∑︁
𝑖=1

𝑃 (𝑦 |𝑢, 𝑥 ′𝑖 , 𝑣)

⇔ (1 − 𝛼) 𝑃 (𝑦 |𝑢, 𝑥, 𝑣) = 𝛽
𝑛∑︁
𝑖=1

𝑃 (𝑦 |𝑢, 𝑥 ′𝑖 , 𝑣)

⇔
𝑛∑︁
𝑖=1

𝑃 (𝑦 |𝑢, 𝑥 ′𝑖 , 𝑣) =
1 − 𝛼
𝛽

· 𝑃 (𝑦 |𝑢, 𝑥, 𝑣) = 𝑛 · 𝑃 (𝑦 |𝑢, 𝑥, 𝑣)

⇔
𝑛∑︁
𝑖=1

𝑃 (𝑦 |𝑢, 𝑥 ′𝑖 , 𝑣) − 𝑛 · 𝑃 (𝑦 |𝑢, 𝑥, 𝑣) = 0

(6)
To make the constraint optimizable, we relax the equality con-

straint to an inequality constraint, i.e.,

minimize 𝐿(𝑔)

s.t.
��� ∑︁
𝑥 ′∈C(𝑢,𝑣)

𝑃 (𝑦 |𝑢, 𝑥 ′, 𝑣) − |C(𝑢, 𝑣) | · 𝑃 (𝑦 |𝑢, 𝑥, 𝑣)
��� ≤ 𝜖

∀𝑢 ∈ U, ∀𝑣 ∈ I(𝑢) ∪ S(𝑢)

(7)

where C(𝑢, 𝑣) is the set of counterfactual histories of user 𝑢 under
the target item 𝑣 (section 4.3.1 and 4.3.2), |C(𝑢, 𝑣) | represents the size
of the set (i.e. 𝑛 in Eq.(6)), I(𝑢) is the set of interacted items of user
𝑢, and 𝜖 is a parameter controlling how rigorous is the constraint.
In Eq.(7), since the item space is very huge, it is impractical to apply
the constraint on all items in practice. As a result, we sample a set
of items for each user, i.e., S(𝑢), where |S(𝑢) | = |I(𝑢) |. For easy
implementation, we apply absolute value inequality to constrain
the upper bound of the above inequality:��� ∑︁

𝑥 ′∈C(𝑢,𝑣)
𝑃 (𝑦 |𝑢, 𝑥 ′, 𝑣) − |C(𝑢, 𝑣) | · 𝑃 (𝑦 |𝑢, 𝑥, 𝑣)

���
≤

∑︁
𝑥 ′∈C(𝑢,𝑣)

���𝑃 (𝑦 |𝑢, 𝑥 ′, 𝑣) − 𝑃 (𝑦 |𝑢, 𝑥, 𝑣)��� ≤ 𝜖 (8)

Therefore, we define the final counterfactual learning in discrete
space as following:

minimize 𝐿(𝑔)

s.t.
∑︁

𝑥 ′∈C(𝑢,𝑣)

���𝑃 (𝑦 |𝑢, 𝑥 ′, 𝑣) − 𝑃 (𝑦 |𝑢, 𝑥, 𝑣)��� ≤ 𝜖
∀𝑢 ∈ U, ∀𝑣 ∈ I(𝑢) ∪ S(𝑢)

(9)

According to Eq.(8), we can see that satisfying the constraint in
Eq.(9) naturally leads to satisfying the constraint in Eq.(7).

4.4.2 Counterfactual Learning in Continuous Space. Many
recommendation models represent users, items and histories as

embedding vectors in a latent space. If a user’s history 𝑥 is rep-
resented as an embedding vector x, then we can directly create
latent counterfactual histories x′ by slightly perturbing vector x in
the latent space. Similarly, let 𝐿(𝑔) be the loss function of a base
recommendation algorithm 𝑔(𝑢, 𝑥), CCF in continuous space aims
to learn 𝐿(𝑔) under a continuous counterfactual constraint:

minimize 𝐿(𝑔)

s.t.
∫
x′

��𝑃 (𝑦 |𝑢, 𝑥 ′, 𝑣) − 𝑃 (𝑦 |𝑢, 𝑥, 𝑣)�� ≤ 𝜖1, ∥x′ − x∥2 ≤ 𝜖2

∀𝑢 ∈ U, ∀𝑣 ∈ I(𝑢) ∪ S(𝑢)

(10)

where x is the embedding of user 𝑢’s real history 𝑥 , x′ is a latent
vector selected from the small 𝜖2-neighbourhood of vector x, and
the integration can be calculated based on Monte Carlo sampling.
All other parameters have the same meaning as Eq.(9).

4.5 Model Learning and Optimization
To solve the above constrained optimization problem, we formulate
the problem as a tractable optimization problem by the Lagrange
Multiplier Method. For the discrete space version, we convert the
objective in Eq.(9) to the following Lagrange optimization form:
minimize 𝐿 (𝑔) +𝜔𝐿𝑐

𝐿𝑐 =
∑︁
𝑢∈U

∑︁
𝑣∈I(𝑢)∪S(𝑢)

max
{
0,

∑︁
𝑥 ′∈C(𝑢,𝑣)

��𝑃 (𝑦 |𝑢, 𝑥 ′, 𝑣) − 𝑃 (𝑦 |𝑢, 𝑥, 𝑣)
�� − 𝜖

}
(11)

where 𝜔 is a parameter controlling the weight of the constraint.
While for continuous space, we process the constraint similarly.

The difference is that the parameter 𝜖2 in Eq.(10) is used to restrict
the distance between counterfactual histories and the real history.

minimize 𝐿 (𝑔) +𝜔𝐿𝑐

s.t. ∥x′ − x∥2 ≤ 𝜖2

𝐿𝑐 =
∑︁
𝑢∈U

∑︁
𝑣∈I(𝑢)∪S(𝑢)

max
{
0,
∫
x′

��𝑃 (𝑦 |𝑢, 𝑥 ′, 𝑣) − 𝑃 (𝑦 |𝑢, 𝑥, 𝑣)
�� − 𝜖1

}
(12)

We still apply Monte Carlo sampling for integration calculation.
The counterfactual constrained learning framework is flexible and
can be applied on many base recommender algorithms 𝑔, which we
will show in the experiments.

5 EXPERIMENTS
We conduct experiments to explore CCF from different perspectives.
In particular, we aim to answer the following research questions:
RQ1: What is the overall performance of the CCF framework, can
CCF improve the recommendation performance? RQ2: Can CCF
reduce Simpson’s paradox? RQ3: How different heuristic rules
influence the performance? RQ4: Is it necessary to select the coun-
terfactual examples after they are generated? RQ5: What is the
impact of the counterfactual constraint in the learning objective?
We will first describe the datasets, baselines and then provide our
answers to the above questions.

5.1 Data Description
Our experiments are conducted on two types of datasets. The first
type is frequently used benchmark dataset MovieLen-100k1. For
the second type, to better show that our framework can help to
1https://grouplens.org/datasets/movielens/

https://grouplens.org/datasets/movielens/
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Table 3: Performance of all three recommendation models on MovieLens-100k and Coat Shopping. The relative improvement is
calculated against the original performance. For recommendation results, the higher the better. For Simpson’s paradox results,
the lower the better. Positive improvements are bold and the highest is underlined.

Models

ML100k Coat Shopping

Recommendation Simpson’s Paradox Recommendation Simpson’s Paradox

nDCG@10 Hit@1 Gender Age nDCG@10 Hit@1 Gender Age

value imp value imp value imp value imp value imp value imp value imp value imp

MF

Original 0.3647 - 0.1490 - 0.1918 - 0.1864 - 0.2042 - 0.1561 - 0.4415 - 0.3236 -
CausE 0.3784 3.8% 0.1651 10.8% 0.1205 37.2% 0.1123 39.8% 0.2100 2.8% 0.1899 21.7% 0.4462 -1.1% 0.3124 3.5%
IPS 0.3696 1.3% 0.1618 8.6% 0.1966 -2.5% 0.1954 -4.8% 0.2261 10.7% 0.2068 32.5% 0.4392 0.5% 0.3217 0.6%
DCF 0.3686 1.1% 0.1543 3.6% 0.2190 -14.2% 0.2091 -12.2% 0.2209 8.2% 0.1983 27.0% 0.4615 -4.5% 0.3622 -11.9%
DICE 0.3692 1.2% 0.1543 3.6% 0.2344 -22.2% 0.2273 -21.9% 0.2303 12.8% 0.2068 32.4% 0.5610 -27.1% 0.4433 -37.0%
MACR 0.3671 0.7% 0.1586 6.4% 0.1516 21.0% 0.1235 33.7% 0.2197 7.6% 0.2236 43.2% 0.3941 10.7% 0.2936 9.3%
CCFK1 0.3661 0.4% 0.1554 4.3% 0.1834 4.4% 0.1822 2.3% 0.2324 13.8% 0.2363 51.4% 0.3547 19.7% 0.2621 19.0%
CCFD1 0.3781 3.7% 0.1683 13.0% 0.1125 41.3% 0.1087 41.7% 0.2061 0.9% 0.2152 37.9% 0.4217 4.5% 0.3078 4.9%
CCFR1r 0.3673 0.7% 0.1554 4.3% 0.1342 30.0% 0.1195 35.9% 0.2165 6.0% 0.2194 40.6% 0.3642 17.5% 0.2810 13.2%
CCFR1n 0.3734 2.4% 0.1533 2.9% 0.1217 36.5% 0.1203 35.5% 0.2089 2.3% 0.2110 35.2% 0.4012 9.1% 0.2991 7.6%
CCFC 0.3729 2.2% 0.1597 7.2% 0.1142 40.5% 0.1062 43.0% 0.2150 5.3% 0.2068 32.5% 0.4206 4.7% 0.3109 3.9%

GRU4Rec

Original 0.4087 - 0.1865 - 0.1460 - 0.1397 - 0.1147 - 0.0759 - 0.1252 - 0.1260 -
CausE 0.4111 0.6% 0.1908 2.3% 0.1366 6.4% 0.1313 6.0% 0.1157 0.9% 0.0802 5.7% 0.1170 6.5% 0.1006 20.2%
IPS 0.4136 1.2% 0.1876 0.6% 0.1480 -1.4% 0.1292 7.5% 0.1160 1.1% 0.0802 5.7% 0.1239 1.0% 0.1204 4.4%
DCF 0.4158 1.7% 0.1951 4.6% 0.1392 4.7% 0.1330 4.8% 0.1174 2.4% 0.0717 -5.5% 0.1317 -5.2% 0.1282 -1.7%
DICE 0.4158 1.7% 0.1929 3.4% 0.1325 9.2% 0.1128 19.3% 0.1273 11.0% 0.0886 16.7% 0.1362 -8.8% 0.1101 12.6%
MACR 0.4211 3.0% 0.1875 0.5% 0.1304 10.7% 0.1167 16.5% 0.1289 12.8% 0.0928 22.3% 0.1437 -14.8% 0.1521 -20.7%
CCFK1 0.4225 3.4% 0.2015 8.0% 0.1152 21.1% 0.1088 22.1% 0.1170 2.0% 0.0675 -11.1% 0.1241 0.9% 0.1225 2.8%
CCFD1 0.4281 4.7% 0.1972 5.7% 0.1235 15.4% 0.1145 18.0% 0.1226 6.9% 0.0886 16.7% 0.1185 5.4% 0.1013 19.6%
CCFR1r 0.4241 3.8% 0.1972 5.7% 0.1257 13.9% 0.1174 16.0% 0.1299 13.3% 0.0802 5.7% 0.1139 9.0% 0.1093 13.3%
CCFR1n 0.4235 3.6% 0.2015 8.0% 0.1143 21.7% 0.1113 20.3% 0.1264 10.2% 0.0802 5.7% 0.1082 13.6% 0.1154 8.4%
CCFC 0.4238 3.7% 0.2015 8.0% 0.1245 14.7% 0.1095 21.6% 0.1352 17.9% 0.0970 27.8% 0.1047 16.4% 0.0895 29.0%

NCR

Original 0.4227 - 0.1972 - 0.1054 - 0.0828 - 0.2608 - 0.0506 - 0.1320 - 0.1128 -
CausE 0.4234 0.2% 0.2090 6.0% 0.0829 21.3% 0.0798 3.6% 0.2813 7.9% 0.0886 75.1% 0.1236 6.4% 0.1057 6.3%
IPS 0.4237 0.2% 0.2036 3.2% 0.0874 17.1% 0.0826 0.2% 0.2916 11.8% 0.1350 166.8% 0.1285 2.7% 0.1094 3.0%
DCF 0.4201 -0.6% 0.1940 -1.6% 0.0859 18.5% 0.0789 4.7% 0.2689 3.1% 0.0802 58.5% 0.1347 -2.0% 0.1135 -0.6%
DICE 0.4199 -0.7% 0.1994 1.1% 0.1211 -14.9% 0.1149 -38.8% 0.2892 10.9% 0.0928 83.4% 0.1421 -7.7% 0.1207 -7.0%
MACR 0.4231 0.1% 0.2101 6.5% 0.0892 15.4% 0.0818 1.2% 0.3011 15.5% 0.1392 175.1% 0.1175 11.0% 0.0987 12.5%
CCFK1 0.4094 -3.1% 0.1940 -1.6% 0.1047 0.7% 0.0835 -0.8% 0.2896 11.0% 0.1139 125.1% 0.1213 8.1% 0.1083 4.0%
CCFD1 0.4144 -2.0% 0.1897 -3.8% 0.1103 -4.6% 0.0844 -1.9% 0.3098 18.8% 0.1308 158.5% 0.1139 13.7% 0.1021 9.5%
CCFR1r 0.4271 1.0% 0.2004 1.6% 0.0854 19.0% 0.0713 13.9% 0.2874 10.2% 0.1013 100.2% 0.1229 6.9% 0.1102 2.3%
CCFR1n 0.4195 -0.8% 0.2111 7.0% 0.0881 16.4% 0.0803 3.0% 0.2816 8.0% 0.0970 91.7% 0.1243 5.8% 0.1079 4.3%
CCFC 0.4274 1.1% 0.2058 4.4% 0.0871 17.4% 0.0733 11.5% 0.3095 18.7% 0.1266 150.2% 0.1188 10.0% 0.0968 14.2%

capture users’ preference, we apply our framework on the Coat
Shopping2 dataset. A special property of this dataset is that the
testing data are collected from randomized trials, i.e., users give
feedback on random items.

5.2 Baseline Models
We employ five causal frameworks for comparison. CausE [7] is
a direct intervention model, which creates randomized treatment
data for causal learning. IPS [39] is an Inverse Propensity Scoring-
based model, which uses a user-independent propensity estimator
to re-weight the training samples. DCF [55] is a deconfounded
recommender, which uses an exposure model to construct a substi-
tute confounder. DICE [74] is a framework for disentangling user
interest and conformity for recommendation with causal embed-
ding. MACR [57] is a model-agnostic framework for alleviating
popularity bias issue in recommender systems.

Meanwhile, we test five versions of our framework. CCFK1,
CCFD1, CCFR1r, CCFR1n are CCF in discrete space under different
heuristic rules. CCFC is CCF in continuous space.

We apply all above frameworks on three base recommenda-
tion models, including a matching model (MF), a sequential model

2https://www.cs.cornell.edu/~schnabts/mnar/

(GRU4Rec) and a reasoning model (NCR). MF [37] uses Matrix Fac-
torization [24] as the prediction function under Bayesian personal-
ized ranking. GRU4Rec [14] uses Gated Recurrent Units (GRU) to
capture sequential patterns. NCR [8] organizes the logic expres-
sions as neural networks for reasoning and recommendation.

5.3 Overall Performance
We answer RQ1 and RQ2 in this section by showing the recom-
mendation performance and Simpson’s paradox performance of
applying causal frameworks (CausE, IPS, DCF, DICE, MACR, CCF∗)
on the three recommendation models in Table 3.

For recommendation performance, we can see that in most cases
causal frameworks can bring positive improvement to the recom-
mendation models. Comparing all frameworks, we see that for all
of the recommendation models, the largest average improvement
over four datasets is mostly brought by our CCF framework.

For Simpson’s paradox evaluation, we follow the paradox de-
tection method in [17]. More specifically, we split users into two
groups according to gender (a binary feature in the dataset) or
age (the split threshold is 35). Similar to the example in Figure
1(b), each user only recommends his or her top-𝐾 items of highest
predicted scores, where 𝐾 is set to 50. We randomly sample 100
users for each item and calculate the percentage of item pairs that

https://www.cs.cornell.edu/~schnabts/mnar/
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Figure 4: Recommendation results (nDCG@10) and Simpson’s paradox results (grouped by gender) on ML100k with different
counterfactual selection parameters. (a) and (b) are discrete versions with R1r heuristic rule under parameter 𝑘 . (c) and (d) are
continuous versions under parameter 𝜖2.
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(d) Continuous Simpson’s Paradox
Figure 5: Recommendation results (nDCG@10) and Simpson’s paradox results (grouped by gender) on ML100k with different
counterfactual constraint weight 𝜔 . (a) and (b) are discrete versions with R1r heuristic rule. (c) and (d) are continuous versions.
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Figure 6: Recommendation results (nDCG@10) and Simpson’s paradox results (grouped by gender) on ML100k with different
counterfactual constraint threshold 𝜖 (𝜖1 for continuous version). (a) and (b) are discrete versions with R1r heuristic rule. (c)
and (d) are continuous versions.

ML100k Coat Shopping

MF 0.52 0.33
GRU4Rec 0.84 0.18
NCR 0.43 0.67

Table 4: Pearson correlation coefficient to measure the rela-
tionship between recommendation improvement and Simp-
son’s paradox mitigation.

have Simpson’s paradox. The Simpson’s paradox performance is
shown in Table 3, and more results of Simpson’s paradox mitigation
are provided in Section 5.6. We can see that our CCF framework
mitigates Simpson’s paradox in most cases while improving rec-
ommendation performance. In contrast, other causal frameworks
may improve the recommendation performance but not necessarily
mitigate the Simpson’s paradox since they are designed through
other perspectives. We calculate the Pearson correlation coefficient
between recommendation improvement (average of improvements
on nDCG@10 and Hit@1) and Simpson’s paradox mitigation (aver-
age of improvements on gender and age) in Table 4. The positive
correlation indicates that mitigating Simpson’s paradox will help
improve recommendation performance.

As we mentioned before, CausE improves performance by split-
ting the observational training data into approximately randomized
data, IPS improves performance by re-weighting the observational

training data, DCF improves performance by reconstructing a sub-
stitute confounder, DICE improves performance by adopting sepa-
rate embeddings for interest and conformity to disentangle them,
and MACR improves performance by eliminating the popularity
bias through removing the direct effect between item properties
and the ranking score. All these frameworks only consider the
real-world examples though with different techniques, however,
the CCF framework not only considers real-world examples but
also involves counterfactual examples, which helps to mitigate the
Simpson’s paradox for making better decision and improving the
recommendation performance.

5.4 Analyzing Counterfactual Examples
In this section, we aim to answer research questions RQ3 and RQ4.
We first dig into the difference between different heuristic rules. We
then show the necessity of the selection process after generation.

5.4.1 Difference between Heuristic Rules. In this section, we
focus on the discrete versions of CCF and discuss the effect of dif-
ferent heuristic rules. Among the heuristic rules in Table 2, K1 and
D1 generate much fewer counterfactual histories than R1, because
K1 and D1 are limited by the number of interactions in the user’s
real history, while R1 can replace each interacted item with a large
number of possible items. As a result, it is more difficult for K1 and
D1 to get satisfied counterfactual examples in the selection process
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Figure 7: The percentage of item pairs showing paradoxwhen
grouping by gender (above) and age (below) on ML100k. 𝑥-
axis is the number of items recommended by each user.

when 𝑘 is small, where 𝑘 is the top-𝑘 selection threshold introduced
in Section 4.3.2. Considering the difficulty of generating qualified
counterfactual examples, the R1 rules are intuitively better than D1
and K1. This is consistent with the experimental results.

5.4.2 Counterfactual Example Selection. The selection is based
on parameter 𝑘 (Section 4.3.2) and 𝜖2 in Eq.(12) for CCF discrete
and continuous version, respectively. We first examine the discrete
versions. We plot the recommendation performance on nDCG@10
and the Simpson’s paradox results under different 𝑘 on Movielens-
100k in Figure 4(a-b), where users are grouped by gender and the
R1r rule is used. Other rules and datasets have similar observations.
We see that when 𝑘 is properly chosen, our framework will mitigate
Simpson’s paradox and improve the performance. However, when
𝑘 is too large—such as 𝑘 = 100 so that all the generated counter-
factual examples are selected—the counterfactual constraint will
mislead the causal preference estimation and lead to relatively more
paradox thus hurt the performance. This observation is consistent
with the theory of conditional intervention (Section 4.2).

For continuous version, we plot recommendation performance
and Simpson’s paradox results under different 𝜖2 in Figure 4(c-d).
When 𝜖2 is small, the counterfactual embedding x′ is very close to
the real embedding x (Eq.(10)(12)), therefore, the estimation of pref-
erence after applying CCF has no much difference from the original
preference, because the counterfactual constraint in Eq.(10)(12) is
easily satisfied. In contrast, if 𝜖2 is too large, x′ will be too far away
from the real embedding x, and if we force their predictions to be
close, causal preference will not be correctly estimated thus the
performance will decrease.

5.5 Analyzing Counterfactual Constraints
There are two important parameters for the counterfactual constraint—
parameter 𝜔 in Eq.(11) and (12), and parameter 𝜖 in Eq.(11) (or 𝜖1
in Eq.(12)). In this section, we provide the answers to RQ5. We will
discuss the two parameters separately in the following.

5.5.1 Counterfactual Constraint Weight. Given loss function
as Eq.(11) and (12), the larger the counterfactual constraint weight𝜔 ,
the more likely the results will follow the constraint. We tune the 𝜔
while keeping other parameters fixed. The results of nDCG@10 are
shown in Figure 5(a)(c). The results of Simpson’s paradox (grouped
by gender) are provided in Figure 5(b)(d). We see that in most cases
the performance would first getting better and then worse, meaning
that the constraint is useful for recommendation and Simpson’s
paradox mitigation but it also requires a good balance with the

original loss. When 𝜔 is too small, the constraint has little effect
on the total loss, leading to only slight improvement or even slight
decrease considering the larger model complexity. In contrast, if
𝜔 is too large, the constraint loss will dominate the total loss, and
thus the recommendation performance is significantly decreased
since the original loss does not take too much effect. Meanwhile,
in this case, the causal preference may not be accurately estimated
thus hurt Simpson’s paradox mitigation. Overall, the weight needs
to be carefully specified in practice, and compared with an overly
large weight, a relatively smaller weight would be preferred.

5.5.2 Counterfactual Constraint Threshold. The counterfac-
tual constraint threshold (i.e. 𝜖 in Eq.(9) and 𝜖1 in Eq.(10)) controls
how rigorous the constraint is. We plot nDCG@10 with different
threshold in Figure 6. We see that the performance first getting
better and then worse and finally tend to be flat when the threshold
is large enough. When the threshold is too small, the constraint
would be too tight and it makes the model less capable of handling
the potential errors in counterfactual examples. When the threshold
is too large, we are actually applying no constraint, since the differ-
ence between real and counterfactual examples’ prediction would
always be smaller than the threshold, and thus the 𝐿𝑐 in Eq.(11) and
(12) would be 0 in most cases. As a result, the performance becomes
relatively flat when the threshold is large enough.

5.6 Influence of Recommendation Length on
Simpson’s Paradox Mitigation

Figure 7 shows the percentage of item pairs that have paradox,
with different 𝐾 ranging from 10 to 200 and users are grouped
by gender or age. The figure shows three base recommendation
models under all frameworks, where CCF is the continuous version.
Coat dataset has similar observations. From the results, we can see
that CCF framework is able to reduce paradox compared with the
original model in the most cases. Additionally, CCF (i.e., the black
line in Figure 7) is almost always the lowest line in all sub-figures,
showing that CCF achieves the best performance compared with
other frameworks in terms of mitigating paradox.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a causal framework (CCF) for mitigating
Simpson’s Paradox in recommendation. We provided a conditional
intervention approach to estimating the 𝑃 (𝑦 |𝑢,𝑑𝑜 (𝑣)) and proposed
a flexible counterfactual constrained learning framework which is
applicable to many recommendation models. Experiments show
that CCF helps to mitigate Simpson’s paradox and improve the
performance of the matching-, sequential- and reasoning-based
models. The CCF framework is flexible and can be extended in
various dimensions in the future, such as extending the causal graph
to more complicated graphs for more complex recommendation
scenarios. We will explore these possibilities in the future.
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