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Motivation

User fairness in recommender systems.

e Should not be biased towards certain sensitive user group.
e Treatment equality by group recommendation unfairness [l
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Improving fairness

In reality, user group features that require fairness control may also be sensitive ones that require

privacy protection.

> Gender, age, sexual orientation, ...
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Motivation

Privacy protection by federated learning:

e |eaving sensitive data on the users’ devices
without upload.
e Communicate model parameters and public

data between user devices and central server.

In RS: federated recommender systems.

However, the fairness objective correspond to a
global metric that requires the collective knowledge
of user groups during optimization.

> A natural conflict in fair federated
learning [?
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Related Work

Federated recommender systems [l
Fairness-aware recommendation 4]

Fair Federated Learning (FairFL) [2I:

e Several concurrent work that studied on
vertical (cross-silo) federated scenarios in
other machine learning tasks 671,

e Our goal: achieve user group fairness in
horizontal FL system.
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Solution

Given the overall objective £ = Lrec + ALtair where the fairness objective:
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Challenges:

e The fairness objective is not directly separable by users,
so it does not accommodate FL.
e Utility function F(u) might be indifferentiable
o E.g.Recall, F1, NDCG
e There is no universal metric of F(u) that also controls other
metrics.



Solution

Given the overall objective £ = Lrec + A Ltair where the fairness objective:

A B
1 1
%Z “Mc—lz ﬂ“a

Assume F(u) = -z:ﬁ;t? , then each user’s local gradient becomes:
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Solution

Given the overall objective £ = Lrec + A Ltair where the fairness objective:

‘Lfan‘ (GO’ G1 > =

o mM_ZG mi

Assume F(u) = —Lﬁé‘c) , then each user’s local gradient becomes:
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Intuitive explanation:
e C>0=>D<1: training if user belongs to the group.
e (C <0=D>1:speed up training if user belongs to the disadvantage group.



Still need to synchronize these aggregated statistics
SOlution of F(u) and group membership counts |G|.

Given the overall objective £ = Lrec + A Ltair W the fa%\ess objective:
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Intuitive explanation:
e C>0=>D<1: training if user belongs to the group.
e (C <0=D>1:speed up training if user belongs to the disadvantage group.



Solution

The fairness objective only needs the correct
aggregated group information instead of the group
label of each individual user:
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This opens up the choice of differential privacy:

e Disguise each user’'s label while keeping the
aggregated info accurate.



Solution

The fairness objective only needs the correct
aggregated group information instead of the group
label of each individual user:
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This opens up the choice of differential privacy:

e Disguise each user’'s label while keeping the
aggregated info accurate.

Challenges:

e F(u) changes across epochs, so adding a
single noise may still expose the user's
group feature.

> Solution: user-wise noise + epoch-wise noise



Solution

Users still need to upload F(u) and which group they belong to, but with disguise:

e Option 1: Random noise.
o Outsiders can figure F(u) with continuous observation since Pr(|limy_o € — E[e]| < §) =1



Solution

Users still need to upload F(u) and which group they belong to, but with disguise:

e Option 1: Random noise.
o Outsiders can figure F(u) with continuous observation since Pr(|limy_o € — E[e]| < §) =1

e Option 2: User-wise noise.
o Random noise across users, but fixed after intialization.
o Information of only one group changes through time, and the group membership is exposed.
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Solution

Users still need to upload F(u) and which group they belong to, but with disguise:

e Option 1: Random noise.
o Outsiders can figure F(u) with continuous observation since Pr(|limy_o € — E[e]| < §) =1
e Option 2: User-wise noise.

o Random noise across users, but fixed after intialization.
o Information of only one group changes through time, and the group membership is exposed.

e Option 3 V: User-wise noise + epoch-wise random noise
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Original Updates noises noises Information to Upload:
10 10 10
—— GO(True group of user) Only one changes
Gl y . g o ' VAsumlu = ]l(u € Go)ﬂ +€LuteEar
0.5 0.5 through time. 051 7 Ny \ ’
/ ) %% 1 VBsum|u = 1(u € G1)Fu + €2, + €8¢
0.0 0.0 0.0 LAl
\ VAcount|u = 1(u € Go) + €3,u
03 No information from| —° —03
the other group VBeount|u = 1(u € G1) + €4,

-=1.0 T T T -1.0 T T T T -1.0 T T T T
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

epoch epoch epoch



Solution

Users still need to upload F(u) and which group they belong to, but with disguise:

e Option 1: Random noi
o OQOutsiders can figure F(
e Option 2: User-wise N
o Random noise across
o Information of only one

Central server aggregation:
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e Option 3 V: User-wise noise + epoch-wise random noise
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Experiments
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Experiments

Threshold for effective fairness control:
Increase lambda
— Smaller group difference
— Higher chance observing switching C (i.e. advantage group «— disadvantage group)

— Unstable fairness control Threshold ot exiehing ¢

Movie - FairMF

1.4

|

group
—— active
inactive

Note:

12

1.0

Unfairness
Value of D

Stable fairness control below the threshold.

0.8

0.6

30 0 5 10 15 20 25 30
Epoch




EXpe r| ments Thresho&?ﬂaf fsziFtching 5

Y

0.0025

Threshold for effective fairness control:
Increase lambda or increase number of group \ ZZ A
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Experiments

Adequate noise magnitude for F2MF:

e The noise should be large enough to disguise ground truth information.
e The aggregated noise should be small enough to maintain accurate estimation of unfairness.
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There are cases when different metrics are consistent:
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Experiments

Correlation between metrics in unfairness evaluation:
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Improving fairness on one metric does not mean improving fairness on another.




Experiments

Correlation between metrics in unfairness evaluation:
There are cases when different metrics are consistent.

There are also cases where metrics are inconsistent, and improving fairness on one metric does not
induce improving fairness on another.
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Experiments

ML1M(activity)

Horizontal federated learning may systematically = 7
improves user fairness:
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significantly smaller than their centralized counterpart (FairMF).

There are similar observations in other fair FL task [3l. e
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Summary

e (Goal: engage user group fairness control in horizontal federated recommender systems.

e F2MF solution framework:
o Effective control through loss-based unfairness metric.
o Little communication overhead from differential privacy module.
o  Works for both partially private and totally private scenarios.

e Some insights:

o FL with FedAvg may naturally improves fairness.
o Performance-based fairness may behave differently according to the chosen metric.

Implementation: https://github.com/CharlieMat/FedFairRec.qit

Thanks!


https://github.com/CharlieMat/FedFairRec.git
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