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Backgrounds

» Recommender Systems
» Playing an important role on the web
» E-Commerce and Review Services, e.g. Amazon and Yelp

» Collaborative Filtering
» The ability to recommend without clear content information
» Have achieved significant success

» Rating Prediction
» Make rating predictions on user-item
rating matrix based on observed ratings
» One of the core tasks of CF
» Widely investigated

11/4/13 Improve Collaborative Filtering through Bordered Block Diagonal Form Matrices 3



Backgrounds

» The use of user-item communities
» Benefits the efficiency and effect in many cases

» Matrix Clustering
» Extract user-item sub-matrices (clusters)
» Conduct Collaborative Filtering on each sub-matrices

» Some existing popular approaches
» User / Item Clustering [Corner & Herlocker, SIGIR'99]
» Co-Clustering [George & Merugu, ICDM’05]
» User-ltem Subgroups Mining [Xu & Bu et al, WWW’12]

» Our Concerns
» Clusters may not be a ‘natural’ representation of communities

» Usually forces a user/item to be in a single cluster
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» Common Interests and Special Interests
» Common Interests: Items favored by users from different communities
» Special Interests: items favored by some specific groups of users

» Common Interests can be shared by different user groups
» e.g. The hot movies
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BBDF structure

» Bordered Block Diagonal Form (BBDF) structure
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» The Intuition
» Row Borders: Super Users
» Column Borders: Super Items, e.g. hot movies
» Diagonal Blocks: User-ltem Communities
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» Graph Partitioning by Vertex Separator (GPVS[Karypis,2011])
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the ABBDF structure

» An underlying assumption in BBDF structure.
» There is no edge between communities.
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» May not be a reasonable assumption
» User might indeed focus on some domains
» They do step into other domains sometimes
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the ABBDF structure

» Approximate Bordered Block Diagonal Form (ABBDF)
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» A special form of ABBDF structure

* The ABBDF structure without border

* Can be achieved with Graph Partitioning
by Edge Separator (GPES) algorithms

* Remove some edges (non-zeros in off-
diagonal areas) and split the graph
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(A)BBDF and Community Detection

» More general conclusions

» Any Community Detection result on a bipartite graph
can be represented as an ABBDF structure
» Not only GPVS or GPES algorithms

» Corollary: Can be represented as an BBDF structure if
there is no inter-community edge.
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Algorithms

» How to permute matrices into (A)BBDF structures?

» BBDF Permutation Algorithm

» Algorithm1, Basic-BBDF-Permutation procedure
» Algorithm2, BBDF-Permutation procedure

» ABBDF Permutation Algorithm

» Algorithm3, ABBDF-Permutation procedure
» Algorithm4, Improve-Density procedure
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BBDF permutation algorithm

» The basic procedure for BBDF permutation

Remove a set of
vertices Vg and split the
graph into k connected

components.

Algorithm 1 Basic-BBDF-Permutation(A, G)

Require:

User-Item rating matrix A.
Bipartite graph G = (V,
are row/column vertex sets of V correspondingly.

Ensure:

Average density of resulting diago

£) = (RUC,E) of A. > R/C

Remove the vertex set
Vg to borders and
permute the reaming to
diagonals

blocks p.

Return the average
density of resulting
diagonal blocks in this

1: Ty + {V1V2 - Vi;Vs} «+ GPVS(G) stage
2: Permute rows of A in order of R1Rs---RirRs
3: Permute columns of A in order 1C2 -+ - CkCs C, C, GCg
4: return p(D,D,--- Dy) > D; denotes the i-th diagonal 63 8 f(lxl 5 9 1105 >7<
block which corresponds to vertex set V; = R; UC; 7| x x X
1 2| X X X
13 X X X
1 X X
Rzg X XiX
X X
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BBDF permutation algorithm (cont.)

» BBDF Permutation algorithm

» Permute sub-matrices into BBDF structure recursively

Algorithm 2 BBDF-Permutation(A, G, p)

Require: _ , The expected minimum
User-Item rating matrix A.

Bipartite graph G = (V,£) of A. a\é?rage dlebrllSIt}kl &l
Density requirement p. lagonal DIOCKS

Ensure: If the density of a sub-
Matrix A permuted into BBDF structure. _ y
1: pa < p(A) matrix hgs not reach_e_d
2: if pa < p then > else do nothing the requwement, §p|lt it
3. p + Basic-BBDF-Permutation(A,G) using the basic
4: if p> pa then > else do nothing procedure
5: for each diagonal block D; in A do
6: BBDF-Permutation(D;, Gy, , p) W If the average density
the vertex set of D;, Gy, is the subgraph induced by V; | improves after split, take
7 end for the split and recurse.
8: end if Else, stop recursion.
9: end if

11/4/13 Improve Collaborative Filtering through Bordered Block Diagonal Form Matrices 13



ABBDF permutation algorithm

Algorithm 3 ABBDF-Permutation(A4, G, p)

Require:
User-Item rating matrix A.
Bipartite graph G = (V,€) = (RUC, ) of A.
Density requirement p.

Ensure:
Matrix A permuted into ABBDF structure:

1: if p(A) > p then
return
else

Split the corresponding
graph using GPES,
resulting in a ABBDF
matrix without borders.

e« {(ViV2---Vi} « GPES(G)
Permute rows of A in order of R1 R+ R
Permute columns of A in order of C;Cs - - - Cp

If the average density of
diagonal blocks didn’t
improve, try to improve it
by moving some rows/
columns to borders.

{ViV5---V;; Vs} +Improve-Density(A4, G, T.)

for each diagonal block D; in A do
ABBDF-Permutation(D;, Gy, p)

end for
11: end if

[
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ABBDF permutation algorithm(cont.)

Algorithm 4 Improve-Density(A,G,T".)

Require:
User-Item rating matrix A.
Bipartite graph G = (V,€) = (RUC, ) of A. For each row and column from
GPES result ' = {V1V2 -+ Vi } of G. each diagonal block, check
Ensure: - s
whether its removal improves
Average density of diagonal blocks greater than p(A). d it P
1: {ViVs- - Vi; Vst « W1 Ve - Vi; 0} 2WAER)2 ClATSIL)
2: while p(D1D;--- Dy.) < p(A) do
2= i_'ﬂ' — %g’, — Oa.l o D d Permute the row/column to
. Oor eac lagon (0] i dAO
. for each line  in D, do | borders whose remgval
6: 5 o _ Xi=12(D;)—n(i(D:) improves average density most
: P~ Sk ‘arca(D;)—area(l(D:))
7: if p> p’ then
. ’ o o =t - . . . .
g' ld‘;, i 1,0 < p Until average density is higher
: enda.il 0 g :
10- end for than the original matrix
11: | end for
12: | Permute line !’ to borders
13: Vél <— V,', — {node(l')}
14: | Vs + Vs U {node(l")} > node(l") denotes the node in
V!, corresponding to line !’
15: end while

16:

return {ViV;---Vi; Vs}

1
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Make Rating Predictions

» Extract sub-matrices representing communities from

the (A)BBDF structure
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Make Rating Predictions (cont.)

» Make rating predictions in 2 steps:

» Step1 : Conduct CF in each of the sub-matrices

» Step2: Average predictions in duplicated blocks
» E.g. S, is predicted twice in sub-matrices A and B
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(a) BBDF matrix (b) Submatrices extracted
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Experiment Setup

» Dataset Description

» 4 real-world datasets: MovieLens-100k, MovieLens-1m,
Dianping, and Yahoo! Music.

ML-100K | ML-1M | DianPing | Yahoo!Music
F#users 943 6,040 11,857 1,000,990
F#items 1,682 3,952 22,365 624,961
F#ratings 100,000 | 1,000,209 | 510,551 | 256,804,235
#ratings/user 106.045 | 165.598 43.059 256.550
F#ratings/item 59.453 [ 253.089 22.828 410.912
average density 0.0630 0.0419| 0.00193 0.000411

Il x X X X

! X X XX
) . _ X X X

)
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Experiment Setup (cont.)

» Experimented the framework on 4 CF algorithms
» User-based
» Iltem-based
» SVD (Singular Value Decomposition)
» NMF (Nonnegative Matrix Factorization)

» Evaluation Metric
» Root Mean Square Error (RMSE)

_ Z?:l("'i — 7i)?
RMSE = \/ N
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Community Analysis

» Density requirement v.s. # diagonal blocks
» Low density -> A small number of big communities
» High density -> A large number of small communities

» Example of BBDF permutation results on DianPing

-

(a) BBDF p = 0.005 (b) BBDF p = 0.01
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Community Analysis (cont.)

» An appropriate density requirement gives reasonable
community detection results.
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Community Analysis (cont.)

» Density requirement v.s. # diagonal blocks
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Community Analysis (cont.)

» Similar results are observed on the other datasets
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Prediction Accuracy

» BBDF: RMSE v.s. Density Requirements

0.89 - ' | |
e = mmmmm e e m e oo I Prediction accuracy\

0.88} tends to be stable (the
BBDF algorithm stop

0.877 to split matrices when
W 0.86L density requirement is
Cé) too high.) /
oC 0.85f ~~~~~°F -

0.84} | | Gains better prediction

e ftom accuracy given
0.83| . svp MovieLens-1M 1 appropriate density
-~ NMF requirement

0804 0.05 0.06 0.07 0.08 0.09
Density Requirement

11/4/13 Improve Collaborative Filtering through Bordered Block Diagonal Form Matrices 24



Prediction Accuracy (cont.)

» ABBDF: RMSE v.s. Density Requirements

Tends to gain better
L A —mmmmm e e e e emm oo B prediction accuracy at first

MovielLens-1
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Prediction Accuracy (cont.)

» Similar results were observed on the other datasets
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Discussions

» Potential advantage: Selective re-training in practical
systems
» Ratings are made by users continuously in real-world systems
» Have to retrain a CF model every period of time

» Only need to retrain those really in need of re-training
» E.g. The RMSE has reached a criterion

o
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> In this work:

» Investigated the relationship between (A)BBDF structure and
community detection

» Designed density-based algorithms to transform a matrix into
(A)BBDF structure

» Proposed a framework to make rating predictions on this
structure

» Future directions

» (A)BBDF structure is independent of specific community
detection algorithm

» Investigate other kinds of (A)BBDF permutation algorithms
except for GPVS and GPES

» Conduct selective re-training using our framework
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Thanks!
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