
EXTRA: Explanation Ranking Datasets for Explainable
Recommendation

Lei Li
Hong Kong Baptist University

Hong Kong, China
csleili@comp.hkbu.edu.hk

Yongfeng Zhang
Rutgers University

New Brunswick, USA
yongfeng.zhang@rutgers.edu

Li Chen
Hong Kong Baptist University

Hong Kong, China
lichen@comp.hkbu.edu.hk

ABSTRACT
Recently, research on explainable recommender systems has drawn
much attention from both academia and industry, resulting in a
variety of explainable models. As a consequence, their evaluation
approaches vary from model to model, which makes it quite diffi-
cult to compare the explainability of different models. To achieve
a standard way of evaluating recommendation explanations, we
provide three benchmark datasets for EXplanaTion RAnking (de-
noted as EXTRA), on which explainability can be measured by
ranking-oriented metrics. Constructing such datasets, however,
poses great challenges. First, user-item-explanation triplet inter-
actions are rare in existing recommender systems, so how to find
alternatives becomes a challenge. Our solution is to identify nearly
identical sentences from user reviews. This idea then leads to the
second challenge, i.e., how to efficiently categorize the sentences
in a dataset into different groups, since it has quadratic runtime
complexity to estimate the similarity between any two sentences.
To mitigate this issue, we provide a more efficient method based on
Locality Sensitive Hashing (LSH) that can detect near-duplicates
in sub-linear time for a given query. Moreover, we make our code
publicly available to allow researchers in the community to create
their own datasets.

CCS CONCEPTS
• Information systems→ Recommender systems; Learning
to rank.
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1 INTRODUCTION
Explainable Recommender Systems (XRS) [12, 26, 27] that not only
provide users with personalized recommendations but also justify
why they are recommended, have become an important research
topic in recent years. Compared with other recommendation algo-
rithms such as Collaborative Filtering (CF) [17, 18] and Collabo-
rative Reasoning (CR) [4, 19] which aim to tackle the information
overload problem for users, XRS further improves users’ satisfaction
and experience [20, 26, 27] by helping them to better understand
the recommended items. Actually, explanation is as important as
recommendation itself because usually there is no absolute “right”
or “wrong” in terms of which item(s) to recommend, instead, multi-
ple items may all be interest to the user and it all depends on how
we explain our recommendation to users.

However, as explanations can take various forms, such as pre-
defined template [9, 27], generated text [3, 10, 12] or decision paths
on knowledge graphs [7, 23, 24, 28], it is sometimes difficult to
evaluate the explanations produced by different methods.

In this work, with the aim to make the standard evaluation of
explainable recommendation possible, we present three benchmark
datasets on which recommendation explanations can be evaluated
quantitatively via standard ranking metrics, such as NDCG, Pre-
cision and Recall. The idea of explanation ranking is inspired by
information retrieval which intelligently ranks available contents
(e.g., documents or images) for a given query. In addition, this idea
is also supported by our observation on the problems of existing
natural language generation techniques. In our previous work on
explanation generation [10], we find that a large amount of the
generated sentences are commonly seen sentences in the training
data, e.g., “the food is good” as an explanation for a recommended
restaurant. This means that the generation models are fitting the
given samples rather than creating new sentences. Furthermore,
even strong language models such as Transformer [21] trained on
a large text corpus may generate contents that deviate from facts,
e.g., “four-horned unicorn” [13].

Thus, we create three EXplanaTion RAnking datasets (denoted
as EXTRA) for explainable recommendation research. Specifically,
they are built upon user generated reviews, which are the collection
of users’ real feedback towards items, and thus are an ideal proxy
of explanation. Also, the datasets can be further enriched by new
explanations when the newly posted reviews contain new item
features or up-to-date expressions.

However, simply adopting reviews [2, 6] or their sentences [5, 22]
as explanations is less appropriate, because it is very unlikely for
two reviews/sentences to be exactly the same, as a result, each
review/sentence only appears once in the data. For this reason,
almost no user shares the same review/sentence (see r1 to r6 in
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Figure 1: User-item-review interactions can be converted
into user-item-explanation interactions, so as to build a con-
nection between explanations and users/items. In the figure,
𝑟∗ represents a review, and 𝑒∗ represents an explanation sen-
tence in the review.

Fig. 1), which makes it difficult to design collaborative learning
algorithms for explanation ranking. Besides, not all sentences in a
user review are of explanation purpose. Our solution is to extract
explanation sentences from reviews that co-occur across various re-
views, so as to connect different user-item pairs with one particular
explanation (e.g., u2-i1 and u3-i3 with explanation e2 in Fig. 1), and
build the user-item-explanation triplet interactions. By finding the
commonly used sentences, the quality of explanations such as read-
ability and expressiveness can be guaranteed. This type of textual
explanations could be very effective in helping users make better
and informed decisions. A recent online experiment conducted on
Microsoft Office 365 [25] finds that their manually designed textual
explanations, e.g., “Jack shared this file with you”, can help users to
access documents faster. It motivates us to automatically create this
type of explanations for other application domains, e.g., movies,
restaurants and hotels.

Then, a follow-up problem is how to detect the nearly identical
sentences across the reviews in a dataset. Data clustering is infea-
sible to this case, because its number of centroids is pre-defined
and fixed. Computing the similarity between any two sentences
in a dataset is practical but less efficient, since it has a quadratic
time complexity. To make this process more efficient, we develop a
method that can categorize sentences into different groups, based
on Locality Sensitive Hashing (LSH) [14] which is devised for near-
duplicates detection. Furthermore, because some sentences are less
suitable for explanation purpose (see the first review’s first sen-
tence in Fig. 2), we only keep those sentences that contain both
noun(s) and adjective(s), but not personal pronouns, e.g., “I”. In
this way, we can obtain high-quality explanations that talk about
item features with certain opinions but do not go through personal
experiences. After the whole process, the explanation sentences
remain personalized, since they resemble the case of traditional
recommendation, where users of similar preferences write nearly
identical review sentences, while similar items can be explained by
the same explanations (see sentences in rectangles in Fig. 2).

Figure 2: Three user reviews for different movies fromAma-
zon (Movies & TV category). Sentences of explanation pur-
poses are highlighted in colors. Co-occurring explanations
across different reviews are highlighted in rectangles.

Notice that, our datasets are different from user-item-tag data
[8, 16], since a single aspect/tag when used as an explanation may
not be able to clearly explain an item’s specialty, e.g., a single word
“food” cannot well describe how good a restaurant’s food tastes.

To sum up, our contributions are listed below:
• We construct three large datasets consisting of user-item-
explanation interactions, on which explainability can be
evaluated via standard ranking metrics, e.g., NDCG. Datasets
and code are made available online.1
• We address two key problems when creating such datasets,
including the interactions between explanations and users/items,
as well as the efficiency for grouping nearly identical sen-
tences.

In the following, we first introduce our data processing approach
and the resulting datasets in Section 2. Then, we present two expla-
nation ranking formulations in Section 3. We experiment existing
methods on the datasets in Section 4. Section 5 concludes this work.

2 METHODOLOGY AND RESULTS
For explanation ranking, the datasets are expected to contain user-
item-explanation interactions. In this paper, we narrow down to
the explanation sentences from user reviews. The key problem is
how to efficiently detect near-duplicates across different reviews,
since it takes quadratic time to compute the similarity between
any two sentences in a dataset. In the following, we first present
our approach to finding duplicate sentences based on sentence
grouping, then introduce the data construction details, and at last
analyze the datasets.

2.1 Sentence Grouping
The advantage of sentence grouping is three-fold. First, it ensures
the readability and expressiveness of the explanations, as they are
extracted from real users’ reviews based on thewisdom of the crowd.
Second, it allows the explanations to be connected with both users
and items, so that we can design collaborative filtering models to
1https://github.com/lileipisces/EXTRA
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(e) Sentence grouping: step 4

Figure 3:White cells denote similarity computation, while black cells omit the computation. (a) shows a naive way to compute
the similarity between any two sentences, which would take quadratic time. (b)-(e) show four example steps in our more effi-
cient sentence grouping algorithm, where orange rectangles denote query steps in LSH, andMdenotes thematched duplicates.

Algorithm 1 Sentence Grouping via LSH
Input: shingle size 𝑛, similarity threshold 𝑡 , min group size 𝑔
Output: explanation set E, groups of sentencesM
1: Pre-process textual data to obtain the sentence collection S
2: 𝑙𝑠ℎ ← 𝑀𝑖𝑛𝐻𝑎𝑠ℎ𝐿𝑆𝐻 (𝑡), C ← ∅
3: for sentence 𝑠 in S do
4: 𝑚 ← 𝑀𝑖𝑛𝐻𝑎𝑠ℎ() // create MinHash for 𝑠
5: for 𝑛-shingle ℎ in 𝑠 do
6: 𝑚.𝑢𝑝𝑑𝑎𝑡𝑒 (ℎ) // convert 𝑠 into𝑚 by encoding its 𝑛-shingles
7: end for
8: 𝑙𝑠ℎ.𝑖𝑛𝑠𝑒𝑟𝑡 (𝑚), C.𝑎𝑑𝑑 (𝑚) // C: set of all sentences’ MinHash
9: end for
10: M ← ∅, Q ← ∅ // Q: set of queried sentences
11: for𝑚 in C do
12: if 𝑚 not in Q then
13: G ← 𝑙𝑠ℎ.𝑞𝑢𝑒𝑟𝑦 (𝑚) // G: ID set of duplicate sentences
14: if G.𝑠𝑖𝑧𝑒 > 𝑔 then
15: M .𝑎𝑑𝑑 (G) // only keep groups with enough sentences
16: E .𝑎𝑑𝑑 (G.𝑔𝑒𝑡 ()) // keep one explanation in each group
17: end if
18: for𝑚′ in G do
19: 𝑙𝑠ℎ.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑚′), Q .𝑎𝑑𝑑 (𝑚′) // for efficiency
20: end for
21: end if
22: end for

learn and predict such connections. Third, it makes explanation
ranking and the automatic benchmark evaluation possible, since
there are only a limited set of candidate explanations.

Computing the similarity between any two sentences in a dataset
is computationally expensive. However, at each step of sentence
grouping, it is actually unnecessary to compute the similarity for
the already grouped sentences. Therefore, we can reduce the com-
putation cost by removing those sentences (see Fig. 3 (b)-(e) for
illustration). To find similar sentences more efficiently, we make
use of Locality Sensitive Hashing (LSH) [14], which is able to con-
duct near-duplicate detection in sub-linear time. LSH consists of
three major steps. First, a document (i.e., a sentence in our case) is
converted into a set of 𝑛-shingles (a.k.a., 𝑛-grams). Second, the sets
w.r.t. all documents are converted to short signatures via hashing,

so as to reduce computation cost and meanwhile preserve docu-
ment similarity. Third, the documents, whose similarity to a query
document is greater than a pre-defined threshold, are returned. The
detailed procedure of sentence grouping is shown in Algorithm 1.

Next, we discuss the implementation details. To make better use
of all the available text in a dataset, for each record we concate-
nate the review text and the heading/tip. Then each piece of text
is tokenized into sentences. In particular, a sentence is removed
if it contains personal pronouns, e.g., “I” and “me”, since explana-
tions are expected to be more objective than subjective. We also
calculate the frequency of nouns and adjectives in each sentence
via NLTK2, and only keep the sentences that contain both noun(s)
and adjective(s), so as to obtain more informative explanations that
evaluate certain item features. After the data pre-processing, we
conduct sentence grouping via an open-source LSH [14] package
Datasketch3. Notice that, we apply it to all sentences in a dataset,
rather than that of a particular item, because it is easier to find com-
mon expressions from a large amount of sentences. When creating
MinHash for each sentence, we set the shingle size 𝑛 to 2 so as to
preserve the word ordering and meanwhile distinguish positive
sentiment from negative sentiment (e.g., “is good” v.s. “not good”).
We test the similarity threshold 𝑡 of querying sentences from [0.5,
0.6, ..., 0.9], and find that the results with 0.9 are the best.

2.2 Data Construction
We construct our datasets on three domains: Amazon Movies &
TV4 (movie), TripAdvisor5 (hotel) and Yelp6 (restaurant). In each of
the datasets, a record is comprised of user ID, item ID, overall rating
in the scale of 1 to 5, and textual review. After splitting reviews into
sentences, we apply sentence grouping (in Algorithm 1) over them
to obtain a large amount of sentence groups. A group is removed if
its number of sentences is smaller than 5 so as to retain commonly
seen explanations. We then assign each of the remaining groups
an ID that we call an explanation ID. Eventually, a user-item pair
may be connected to none, one or multiple explanation IDs since
the review of the user-item pair may contain none, one or multiple
explanation sentences. We remove the user-item pairs that are not

2https://www.nltk.org
3http://ekzhu.com/datasketch/lsh.html
4http://jmcauley.ucsd.edu/data/amazon
5https://www.tripadvisor.com
6https://www.yelp.com/dataset/challenge



Table 1: Data format of our datasets. Each dataset contains two plain text files: IDs.txt and id2exp.txt. Entries in each line
of the files are separated by double colon. In IDs.txt, expID denotes the explanation ID, which corresponds to a group of
near-duplicate sentences, while the senID is the original sentence ID. When a record has multiple explanation IDs, they are
separated by single colon. In id2exp.txt, expID applies to both expID and senID in IDs.txt.

File Format

IDs.txt
userID::itemID::rating::timeStamp::expID:expID::senID:senID
A20YXFTS3GUGON::B00ICWO0ZY::5::1405958400::13459471:5898244::32215058:32215057
APBZTFB6Y3TUX::B000K7VHPU::5::1394294400::13459471::21311508

id2exp.txt

expID::expSentence
5898244::Great Movie
13459471::This is a wonderful movie
21311508::This is a wonderful movie

Table 2: Statistics of the datasets. Density is the #triplets di-
vided by #users × #items × #explanations.

Amazon TripAdvisor Yelp
# of users 109,121 123,374 895,729
# of items 47,113 200,475 164,779
# of explanations 33,767 76,293 126,696
# of (𝑢, 𝑖) pairs 569,838 1,377,605 2,608,860
# of (𝑢, 𝑖, 𝑒) triplets 793,481 2,618,340 3,875,118
# of explanations / (𝑢, 𝑖) pair 1.39 1.90 1.49
Density (×10−10) 45.71 13.88 2.07

connected to any explanation ID, and the remaining records are
thus user-item-explanation triplets.

To make our datasets more friendly to the community, we largely
follow the data format of a well-known dataset MovieLens7. Specif-
ically, we store each processed dataset in two separate plain text
files: IDs.txt and id2exp.txt. The former contains the meta-data
information, such as user ID, item ID and explanation ID, while
the latter stores the textual content of an explanation that can be
retrieved via the explanation ID. The entries of each line in both
files are separated by double colon, i.e., “::”. If a line in IDs.txt con-
tains multiple explanation IDs, they are separated by a single colon,
i.e., “:”. The detailed examples are shown in Table 1. With this type
of data format, loading the data would be quite easy, but we also
provide a script in our code for data loading.

2.3 Data Analysis
Table 2 shows the statistics of the processed datasets. Notice that,
multiple explanations may be detected in a review, which leads to
more than one user-item-explanation triplets. As we can see, all
the three datasets are very sparse.

Next, we show 5 example explanations on each dataset in Table
3. We can see that the explanations vary from dataset to dataset, but
they all reflect the characteristics of the corresponding datasets, e.g.,
“a wonderful movie for all ages” on the dataset Amazon Movies &
TV. The occurrence of short explanations is high, not only because
LSH favors short text, but also because people tend to express their
opinions using common and concise phrases. Moreover, we can

7https://grouplens.org/datasets/movielens/

Table 3: Example explanations after sentence grouping on
three datasets. Occurrence means the number of near dupli-
cate explanations.

Explanation Occurrence
Amazon Movies & TV

Excellent movie 3628
This is a great movie 2941
Don’t waste your money 834
The sound is okay 11
A wonderful movie for all ages 6

TripAdvisor
Great location 61993
The room was clean 6622
The staff were friendly and helpful 2184
Bad service 670
Comfortable hotel with good facilities 8

Yelp
Great service 46413
Everything was delicious 5237
Prices are reasonable 2914
This place is awful 970
The place was clean and the food was good 6

observe some negative expressions, which can be used to explain
dis-recommendations [27].

Because constructing the datasets does not involve manual ef-
forts, we do observe one minor issue. Since a noun is not necessarily
an item feature, the datasets contain a few less meaningful explana-
tions that are less relevant to items, e.g., “the first time”. This issue
can be effectively addressed if we pre-define a set of item features
or filter out item-irrelevant nouns for each dataset.

3 EXPLANATION RANKING FORMULATION
The task of explanation ranking aims at finding a list of expla-
nations to explain a recommendation for a user. Similar to item
ranking, these explanations are better to be personalized to the
user’s interests as well as the target item’s characteristics. To pro-
duce such a personalized explanation list, a recommender system
can leverage the user’s historical data, e.g., her past interactions



Table 4: Performance comparison of all methods on the top-10 explanation ranking in terms of NDCG, Precision (Pre), Recall
(Rec) and F1 (%). The best performing values are boldfaced.

Amazon TripAdvisor Yelp
NDCG@10 Pre@10 Rec@10 F1@10 NDCG@10 Pre@10 Rec@10 F1@10 NDCG@10 Pre@10 Rec@10 F1@10

CD 0.001 0.001 0.007 0.002 0.001 0.001 0.003 0.001 0.000 0.000 0.003 0.001
RAND 0.004 0.004 0.027 0.006 0.002 0.002 0.011 0.004 0.001 0.001 0.007 0.002
RUCF 0.341 0.170 1.455 0.301 0.260 0.151 0.779 0.242 0.040 0.020 0.125 0.033
RICF 0.417 0.259 1.797 0.433 0.031 0.020 0.087 0.030 0.037 0.026 0.137 0.042
PITF 2.352 1.824 14.125 3.149 1.239 1.111 5.851 1.788 0.712 0.635 4.172 1.068

and comments on other items. In the following, we introduce two
types of explanation ranking formulation, including global-level
and item-level explanation ranking.

In the setting of global-level explanation ranking, there is a
collection of explanations E that are globally shared for all items.
The recommender system can estimate a score 𝑟𝑢,𝑖,𝑒 for each expla-
nation 𝑒 ∈ E for a given pair of user 𝑢 ∈ U and item 𝑖 ∈ I. The
user-item pair can be either an item that a user interacted before,
or an item recommended for the user based on a recommendation
model. According to the scores, the top-𝑁 explanations can be se-
lected to justify why recommendation 𝑖 is made for user𝑢. Formally,
this explanation list can be defined as:

Top(𝑢, 𝑖, 𝑁 ) := 𝑁
argmax

𝑒∈E
𝑟𝑢,𝑖,𝑒 (1)

Meanwhile, we can perform item-level explanation ranking
to select explanations from the target item’s collection, which can
be formulated as:

Top(𝑢, 𝑖, 𝑁 ) := 𝑁
argmax
𝑒∈E𝑖

𝑟𝑢,𝑖,𝑒 (2)

where E𝑖 is item 𝑖’s explanation collection.
The two formulations respectively have their own advantages.

The global-level ranking can make better use of all the user-item-
explanation interactions, e.g., “great story and acting” for different
items (see Fig. 2), so as to better capture the relation between users,
items and explanations. As a comparison, item-level ranking can
prevent the explanation model from presenting item-dependent
explanations to irrelevant items, e.g., “Moneyball is a great movie
based on a true story” that only applies to the movie Moneyball.
Depending on the application scenarios, we may adopt different
formulations.

4 EXPERIMENTS
In this section, we first introduce five prototype methods for expla-
nation ranking. Then, we discuss the experimental details. At last,
we analyze the results of different methods.

4.1 Explanation Ranking Methods
On the global-level explanation ranking task, we test five methods.
The first one is denoted as RAND, which randomly selects expla-
nations from the explanation set E for any given user-item pair.
It is simply used to show the bottom line performance of expla-
nation ranking. The other four methods can be grouped into two
categories, including collaborative filtering and tensor factorization.

For the ranking purpose, each of the four methods must estimate a
score 𝑟𝑢,𝑖,𝑒 for a triplet (𝑢, 𝑖, 𝑒).

4.1.1 Collaborative Filtering. Collaborative Filtering (CF) [17, 18]
is a typical type of recommendation algorithms that recommend
items for a user, based on either the user’s neighbors who have
similar preference, or each item’s neighbors. It naturally fits the
explanation ranking task, as some users may care about certain
item features, and some items’ specialty could be similar. We ex-
tend user-based CF (UCF) and item-based CF (ICF) to our ternary
data, following [8], and denote them as RUCF and RICF, where “R”
means “Revised”. Taking RUCF as an example, we first compute the
similarity between two users 𝑢 and 𝑢 ′ via Jaccard Index as follows,

𝑠𝑢,𝑢′ =
|E𝑢 ∩ E𝑢′ |
|E𝑢 ∪ E𝑢′ |

(3)

where E𝑢 and E𝑢′ denote the explanations associated with 𝑢 and
𝑢 ′, respectively. Then we estimate a score for the triplet (𝑢, 𝑖, 𝑒), for
which we only retain user 𝑢’s neighbors who interacted with both
item 𝑖 and explanation 𝑒 .

𝑟𝑢,𝑖,𝑒 =
∑

𝑢′∈N𝑢∩(U𝑖∩U𝑒 )
𝑠𝑢,𝑢′ (4)

Similarly, RICF can predict a score for the same triplet via the
neighbors of items.

4.1.2 Tensor Factorization. The triplets formed by users, items and
explanations correspond to entries in an interaction cube, whose
missing values could be recovered by Tensor Factorization (TF)
methods. Thus, we test two typical TFmethods, including Canonical
Decomposition (CD) [1] and Pairwise Interaction Tensor Factoriza-
tion (PITF) [16]. To predict a score 𝑟𝑢,𝑖,𝑒 , CD performs element-wise
multiplication on the latent factors of user 𝑢, item 𝑖 and explana-
tion 𝑒 , and then sums over the resultant vector. Formally, it can be
written as:

𝑟𝑢,𝑖,𝑒 = (p𝑢 ⊙ q𝑖 )⊤o𝑒 =

𝑑∑
𝑘=1

𝑝𝑢,𝑘 · 𝑞𝑖,𝑘 · 𝑜𝑒,𝑘 (5)

where ⊙ represents two vectors’ element-wise multiplication, and
𝑑 is the number of latent factors. PITF does the prediction via two
sets of matrix multiplication as follows,

𝑟𝑢,𝑖,𝑒 = p⊤𝑢 o
𝑈
𝑒 + q⊤𝑖 o

𝐼
𝑒 =

𝑑∑
𝑘=1

𝑝𝑢,𝑘 · 𝑜𝑈𝑒,𝑘 +
𝑑∑

𝑘=1
𝑞𝑖,𝑘 · 𝑜𝐼𝑒,𝑘 (6)

where o𝑈𝑒 and o𝐼𝑒 are two different latent factors for the same ex-
planation.



Table 5: Top-5 and bottom-5 explanations ranked by PITF
for a user-item pair on Amazon Movies & TV dataset. There
are two ground-truth explanations, and the matched one is
boldfaced.

Top-5 Bottom-5
The acting is superb Good B-movie
The cast is first rate The final Friday
The acting is wonderful This was a great event
The main character Dead alive
The acting is first rate A voice teacher and early music fan

We opt for Bayesian Personalized Ranking (BPR) criterion [15] to
learn the parameters of the two TF methods, because it can model
the relative ordering of explanations, e.g., the ranking score of a
user’s interacted explanations should be greater than that of her
un-interacted explanations. The objective function of both CD and
PITF is shown below:

min
Θ

∑
𝑢∈U

∑
𝑖∈I𝑢

∑
𝑒∈E𝑢,𝑖

∑
𝑒′∈E/E𝑢,𝑖

− ln𝜎 (𝑟𝑢,𝑖,𝑒𝑒′) + 𝜆 | |Θ| |2𝐹 (7)

where 𝑟𝑢,𝑖,𝑒𝑒′ = 𝑟𝑢,𝑖,𝑒 − 𝑟𝑢,𝑖,𝑒′ denotes the difference between two
interactions, 𝜎 (·) is the sigmoid function, I𝑢 represents user 𝑢’s
interacted items, E𝑢,𝑖 is the explanation set of (𝑢, 𝑖) pair for training,
Θ denotesmodel parameters, and 𝜆 is a coefficient for preventing the
model from over-fitting. To learn model parameters Θ, we optimize
Eq. (7) for both CD and PITF via stochastic gradient descent. At
the testing stage, we can measure scores of explanations in E for a
user-item pair, and then rank them according to Eq. (1).

Notice that, CD and PITF may be further enriched by considering
more complex relationships between explanations (e.g., the ranking
score of a user’s positive explanations > the other users’ explana-
tions > the user’s negative explanations). We leave the exploration
for future work.

4.2 Experimental Settings
As discussed earlier, this paper aims at achieving a standard way of
evaluating recommendation explanations via ranking. To compare
the performance of different methods on the explanation rank-
ing task, we adopt four ranking-oriented metrics: Normalized Dis-
counted Cumulative Gain (NDCG), Precision (Pre), Recall (Rec)
and F1. Top-10 explanations are returned for each testing user-item
pair. We randomly select 70% of the triplets in each dataset for train-
ing, and the rest for testing. Also, we make sure that the training
set holds at least one triplet for each user, item and explanation.
We do this for 5 times, and thus obtain 5 data splits, on which we
report the average performance of each method.

All the methods are implemented in Python. To allow CF-based
methods (i.e., RUCF and RICF) better utilize user/item neighbors, we
do not restrict the upper limit of size for N𝑢 and N𝑖 . For TF-based
methods, i.e., CD and PITF, we search the number of latent factors 𝑑
from [10, 20, 30, 40, 50], regularization coefficient 𝜆 from [0.001, 0.01,
0.1], learning rate 𝛾 from [0.001, 0.01, 0.1], and maximum iteration
number 𝑇 from [100, 500, 1000]. After parameter tuning, we use
𝑑 = 20, 𝜆 = 0.01, 𝛾 = 0.01 and 𝑇 = 500 for both CD and PITF.

4.3 Results and Analysis
Table 4 presents the performance comparison of different methods
on three datasets. We have the following observations. First, each
method performs consistently on the three datasets regarding the
four metrics. Second, the performances of both RAND and CD
are the worst, because RAND is non-personalized, while the data
sparsity problem (see Table 2) may be difficult to mitigate for CD
that simply multiplies three latent factors. Third, both RUCF and
RICF that can make use of user/item neighbors, are better than
RAND, but they are still limited because of the data sparsity issue.
Lastly, PITF improves CD and also outperforms RUCF and RICF,
with its specially designed model structure to tackle data sparsity
issues (see [16] for discussions).

To better understand how explanation ranking works, in Table 5
we provide top-5 and bottom-5 explanations ranked by PITF for a
specific user-item pair. For this record, there are two ground-truth
explanations, i.e., “The story is true” and “The cast is first rate”, and
the latter is ranked the second by PITF. Moreover, the key features
of the other explanations among the top-5 are “character” and “act-
ing”, which are semantically close to “cast”. As a comparison, the
bottom-5 explanations are less relevant to the ground-truth, and
their sentence quality is not good. This hence shows the effective-
ness of explanation ranking in finding relevant and high-quality
explanations for recommendations.

5 CONCLUSION AND FUTUREWORK
In this paper, we construct three explanation ranking datasets for
explainable recommendation research, with an attempt to achieve
a standard way of evaluating explainability. To this end, we address
two problems during data construction, including the lack of user-
item-explanation interactions and the efficiency of detecting similar
sentences from user reviews. Since this paper’s focus is about data
construction, we present our explanation ranking methods (with
and without utilizing the textual content of explanations) in [11].

We believe the explanation task can be formalized as a standard
ranking task just as the recommendation task. This not only en-
ables standard evaluation of explainable recommendation but also
helps to develop advanced explainable recommendation models.
In the future, we will extend this work on two dimensions. One
dimension is to develop multimodal explanation ranking datasets
by adopting our sentence grouping approach to images, so as to
construct datasets with visual explanations. Another dimension
is to develop better explanation ranking models for explainable
recommendation [26]. Moreover, we intend to seek industrial co-
operation for conducting online experiments to test the impact of
the ranked explanations to real users, e.g., the click through rate,
which will help to validate explainable recommendation models
under various different kinds of recommendation scenarios.
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