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ABSTRACT

In juridical field, judges usually need to consult several relevant
cases to determine the specific articles that the evidence violated,
which is a task that is time consuming and needs extensive profes-
sional knowledge. In this paper, we focus on how to save the manual
efforts and make the conviction process more efficient. Specifically,
we treat the evidences as documents, and articles as labels, thus
the conviction process can be cast as a multi-label classification
problem. However, the challenge in this specific scenario lies in two
aspects. One is that the number of articles that evidences violated is
dynamic, which we denote as the label dynamic problem. The other
is that most articles are violated by only a few of the evidences,
which we denote as the label imbalance problem. Previous meth-
ods usually learn the multi-label classification model and the label
thresholds independently, and may ignore the label imbalance prob-
lem. To tackle with both challenges, we propose a unified Dynamic
Pairwise Attention Model (DPAM for short) in this paper. Specifi-
cally, DPAM adopts the multi-task learning paradigm to learn the
multi-label classifier and the threshold predictor jointly, and thus
DPAM can improve the generalization performance by leveraging
the information learned in both of the two tasks. In addition, a pair-
wise attention model based on article definitions is incorporated
into the classification model to help alleviate the label imbalance
problem. Experimental results on two real-world datasets show that
our proposed approach significantly outperforms state-of-the-art
multi-label classification methods.
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1 INTRODUCTION

Crimes classification over the rigorously defined legal articles is
a tedious job in the juridical field. Judges usually need to consult
several relevant cases to determine the specific legal articles that
an evidence violated, which is time consuming and needs extensive
professional knowledge. Table 1 shows an example of an evidence
in a legal case, as well as the legal article that the evidence violated.
Generally, the task can be cast as a multi-label classification prob-
lem to enhance working efficiency and to save manual efforts. In
this work, we denote the multi-label classification problem from
evidences to articles as the crimes classification task, which helps
the judge to pinpoint potential articles quickly and accurately.
However, this problem is a difficult task and we may face two key
challenges in practice. One is that the number of articles violated
by different evidences is dynamic [10, 32, 42], i.e., the label dynamic
problem. Through our analysis on a large scale real-world referee
document dataset where 70 articles are considered, the article set
size over evidences variants significantly, as shown in Figure 1.
The other challenge is the (class) label imbalance problem [3, 5,
34]. A multi-label classification dataset is regarded as imbalanced
if some of its (minority) labels in the training set are heavily under-
presented compared to other majority labels. Statistics over the
same dataset is shown in Figure 2. As we can see, the number
of violated evidences for each article (label) follows a long-tailed
distribution, which means that many articles are seldom violated
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Figure 1: Distribution of article set size over evidences. x-
axis stands for the article set size, y-axis indicates the pro-
portion of evidences.

Table 1: An example of the judgement case, including an ev-
idence and two articles violated.

Evidence: In late February 1, 2010 10 pm, Li intended to a
cinema with his friend Jiang. After a contretemps
with the defendant Guo, they gave Guo a beating
and Guo ran away. After watched the movie, Li
and Jiang were assaulted by Guo and his friends
near the cinema. Jiang was stabbed by Guo.....
Article22: Preparation for a crime refers to the
preparation of the instruments or the creation of
the conditions for a crime;

Article25: A joint crime refers to an intentional
crime committed by two or more persons jointly.

Article:

by evidences. Most traditional multi-label classification algorithms
try to minimize the overall classification error during the training
process, which implicitly assumes equivalent importance over all
labels. The skewed distribution of class labels makes classification
algorithms under this equivalent assumption biased towards the
majority class labels. Though article definition can indicate some
relations among different articles to alleviate the label imbalance
problem (as shown in Table 1, the definition of Article 22 is similar
to Article 25), none of work has considered this information in
crimes classification.

The difficulty in crimes classification thus raises an interesting
research question: Given a set of evidences and article definitions,
can we classify the evidence automatically?

Although recent studies suggest that multi-label classification is
increasingly required in many applications, such as protein gene
classification [2], music categorization [31], and semantic scene
classification [22]. To the best of our knowledge, no practice have
been conducted on crimes classification in juridical scenarios.

Previous work on multi-label classification usually exploits the
label correlations, such as BP-MLL [40], kernel method [10], and cal-
ibrated label ranking [6], etc. However, all these methods learn the
multi-label classification model and label threshold independently,
and the label imbalance problem is largely ignored. To tackle with
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Figure 2: Distribution of article set size over evidences. The
x-axis stands for the sorted labels according their frequen-
cies in the dataset, y-axis represents counts of labels.

the first problem, we propose a multi-task framework to learn the
multi-label classification model and the threshold predictor jointly.
While for the second problem, we adopt the label descriptions to
model the pairwise relations between labels, and extend the ex-
act label set to a soft attention matrix over all the possible labels,
which will alleviate the label imbalance problem as shown in our
experiments.

In this paper we propose a unified model named Dynamic Pairwise
Attention Model (DPAM for short) for crimes classification. Specif-
ically, we embed each evidence and article definition using the
bag-of-word representations, and enumerate each article set into a
pairwise label set, so that we can learn the pairwise label coverage-
based classifiers from the transformed dataset. Besides, a label at-
tention matrix is constructed based on the article definitions to
alleviate the label imbalance problem. We then design a regression
model to learn a multi-label threshold predictor for each label auto-
matically. Finally, a multi-task framework is designed to learn the
two tasks jointly thus to improve the generalization performance
by leveraging the information contained in related tasks.

Overall, the major contributions of our work are as follows:

o We make the first attempt to investigate the prediction power
of evidences and article definitions for crimes classification
in juridical scenario.

e We design a multi-task learning paradigm to learn multi-
label classifier and threshold predictor jointly, thus DPAM
can improve the generalization performance by leveraging
the information contained in related tasks.

e A Pairwise Attention Model based on article definitions is
incorporated to the classification model to alleviate the label
imbalance problem.

e We conduct extensive experiments on two real-world datasets
to verify the effectiveness of the proposed DPAM model as
compared with different baseline methods.

The rest of the paper is organized as follows. After a summary of
related work in Section 2, we describe the problem formalization of
crimes classification in juridical scenario and our proposed model
in Section 3. We provide experiments and evaluations in Section 4.
Section 5 concludes this paper and discusses future directions.
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Figure 3: The overall architecture of the proposed Dynamic Pairwise Attention Model (DPAM).

2 RELATED WORK

In this section we briefly review two research areas related to our
work: multi-task learning and multi-label learning.

2.1 Multi-task learning

The idea of learning multiple tasks together is to improve the gen-
eralization performance by leveraging the information contained in
the related tasks. This method is widely used in various fields, such
as computer vision [30, 37, 43], natural language process [8, 12, 21-
23], genomics [26], demographics prediction [9, 45], and represent-
ing learning [1, 14, 44], etc. For example, Zhang et al. proposed a
multi-task learning architecture with four types of recurrent neural
layers to fuse information across multiple related tasks [39]. Sun et
al. proposed a joint model of face identification and versification for
reducing intra-personal variations while enlarging inter-personal
differences [29]. Wang et al. motivated a multi-task learning-based
framework for learning coupled and unbalanced representations
for subspace segmentation [35]. Masaru et al. proposed a general
framework of multi-task learning using curriculum learning for
sentence extraction and document classification [13]. Misra et al.
introduced a principled approach to learn shared representations
in ConvNets using multi-task learning [25]. Pentina et al. studied a
variant of multi-task learning in which annotated data is available
on some of the tasks [27]. Collobert et al. introduced a single net-
work to learn several NLP tasks jointly [8]. Liu et al. proposed an
adversarial multi-task learning framework to alleviate the shared
and private latent feature spaces from interfering with each other
task [21]. Li et al. proposed a novel formulation by presenting a
new task-oriented regularizes that can jointly prioritize tasks and
instances [19]. In our model, we use a multi-task strategy to merge
the evidence classifier and threshold predictor by using cross-task
information.

2.2 Multi-Label Learning

Existing multi-label classification algorithms can be divided into
two steps: label correlations exploitation strategies and threshold
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calibration learning. The first step exploits correlations among la-
bels, and related work can be categorized into three families [42]:
First-order strategy, Second-order strategy and High-order strategy.
For example, Boutell et al. decomposed the multi-label problem to
a number of multiple dependent binary classification problems [4].
Brinker and Klaus proposed a generic extension to overcome the ex-
pressive power limitations of previous approaches to label ranking
induced by lack of calibrated scale [6]. Tsoumakas et al. proposed an
ensemble method for multi-label classification [32]. In their work, a
RAKEL algorithm is constructed for each member of the ensemble
by considering a small random subset of labels. Li and Guo pro-
posed to exploit kernel canonical correlation analysis (KCCA) to
capture nonlinear label correlations and performed nonlinear label
space reduction for multi-label learning [20]. Zhai et al. designed
an ensemble method with a minimum ranking margin objective
function to construct an accurate multi-label classifier [38]. In the
second step, a threshold learning mechanism is used to determine
the size of label set for each instance. For example, Tsoumakas et
al. used a fixed threshold to differentiate relevant and irrelevant
labels for each instance [32]. Yang [36] and Fan [11] analyzed sev-
eral thresholding strategies on the performance of a classier under
various conditions. Elisseeff [10] and Zhang [42] designed a linear
regression model to predict the label set size. As we can see, tra-
ditional methods divided the multi-label learning procedure into
two independent steps (classifier learning and predictor learning),
however, these two components can be very closely related in many
practical tasks, thus an independent learning strategy may may
limit the performance of the models.

3 OUR APPROACH

In this section, we first introduce the problem formalization of
multi-label classification. We then describe the proposed DPAM
model in detail. After that, we present the learning and prediction
procedure of DPAM.
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3.1 Formalization

We use X = {x(l),x(z), ...,x|X|} to denote all the evidences, and
C = {y1, Y2, ..., y|c|} represents the set of all possible label con-
cepts, i.e. articles. Each y; € {0, 1} indicates whether article y;
is violated or not. |X| and |C| represent the total number of evi-
dences and labels. We use £ = {1(1), 1(2)...I(|CD} to represent the
label descriptions, where 1() is the definition of the article y;. For
each instance (x(k), Y(k)), we use x%) to represent the k-th evi-
dence, Y¥) c ¢ represents the article set assigned to x(5)_In the
following sections, we will use “label” instead of article for clarity.

Given all the evidences X and label descriptions £, our task is
to find an optimal label set Y(®) for each unlabeled instance x(¥) in
the space of label sets P(C), i.e. the power set of C.

3.2 DPAM

In this section, we present our Dynamic Pairwise Attention Model
in detail. Figure 3 shows the architecture of our model. Specifically,
our model consists of two components: a Pairwise Attention Model
(PAM for short) that produces scores for labels, and a Dynamic
Threshold Predictor that generates a reference point for each label
to decide whether the label is relevant or not. Finally, we adopt a
multi-task learning approach to learn these two tasks jointly.

3.2.1 Pairwise Attention Model. In juridical field, each evi-
dence is described by a set of words. Here we take the bag-of-word
representation as the input, and map each word to a vector in a con-
tinuous space. Then we aggregate all the word vectors using some
operators to form the evidence representations and label description
representations. PAM considers pairwise relations between labels.
Specifically, for each training instance (x50, y(k)), PAM emulates
all the pairwise relations in Y, by this our model can exploit
the label correlations. We take Y(K) = {y1,y2, y3} as an example,
and after enumeration, the initial label set will be transformed into
{1, y2), (Y1, y3), (y2, y3)}

More formally, let V! = {5}1 e RP»|j = 1,..., N} denote all the
word vectors in a Dy,-dimensional continuous space. For each evi-
dence and label description, we aggregate the word vectors to form
the evidence representation and label description representation
separately as follows:

5@k = 9@l - j e xb)
50 = g3l - j e 10)

where g(-) denotes the aggregation function. In our work, we use
TextCNN [15] to form our inputs. Given evidence %) and label de-
scriptions £, PAM concerns the conditional probability of pairwise
(yi,yj) € Y®), which is written as follows:

P(yi, yjlx®), £) = P(ys, y;1x*)PaD, 10))

where P(y;, yjlx(k)) and P(I), 19)) is calculated separately.

To solve the label imbalance problem, we introduce the pair-
wise label relation. As we known, attention model in traditional
sequence modeling, such as LSTM and GRU, places a soft weighting
mechanism on important subsequences [33]. In order to enhance
the importance of sparse pairwise labels, we extend the traditional
attention model to this pairwise relation sets, namely, the Pairwise
Attention Model. Given label description representation (-9 and
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L)), the pairwise attention matrix is calculated by the following
function:
G ())

|C| ~(Li) . (L
ST

P(l(i)’ l(i)) — 1)

As we can see, in our model, P(l(i), l(i)) can be regarded as an
attention score to softly adjust the significance of pair (y;,y;) in
label set Y%). This mechanism will make those labels that are not in
the label set also influence the final loss function, and enhance the
significance of sparse pairwise labels that have similar descriptions,
so that we can alleviate the label imbalance problem.

Accordingly, the posterior probability for each training label pair
in the pairwise label set P(y;, yj|x(k)) is calculated by a softmax
function:

exp(le-FIwiii)
Zjiey exp(le-Rwilig)

P(yi, yj1x®) =

where W = RPV*ICl 5 the interaction matrix, ﬁ(i’j )isa |C| size
vector, and the i-th dimension and j-th dimension of ﬁ(i’j ) are equal
to 1, while the rest are equal to 0. Y is all the possible vectors when
considering different pair (y;, y;). The objective function of PAM is
then defined as the log likelihood over all the evidences as follows:

lpam = log P(y;, y;|x*), £) (2)
xeX (y;,y;)€E(YXH)

2,

xR eX (yi,y;)€E(YR))

(1og Py ys1x™®) + log P, 1)

where E(Y (%)) represents the enumeration of pairwise relations in
y (k).

Finally, our PAM outputs the probability of each label y; for new
instance x(%) as the following equation based on the learned W:

exp(3&FwW,;)
] exp(@e W)

P(y;|x'®)) =

where W,; represents the i-th column of W.

3.22 Dynamic Threshold Predictor. Through PAM, the out-
put probability of each label P(yilx(k)) is used for threshold pre-
diction. Generally, we aim to learn a decision boundary for each
label to decide whether this label is relevant to an evidence or not.
Intuitively, if P(yilx(k)) is above the label y;’s boundary t;, then
the label y; is relevant to xk) and yi € Y, if P(y; [x()) is under
the y;’s boundary t;, then the label y; is irrelevant to x(k) Specifi-
cally, we use following function to measure the confidence of the
predicted label for each evidence:

margin(x®), y;) = [P(yi|x*®)) - t;)] - Segx®,y1) (3

where t; € TXIC! is the boundary we need to learn for label y;.
Seg(x(k), y;) is a segmented function, which is defined as follows:

1, y € y(®)
Seg(x(k), yi) = { I

-1, yigy®

In our model, margin(x(k),yi) represents a “safe margin” by
which label y; is relevant to evidence x(k), margin(x(k), yi) > 0
indicates that evidence x(¥) is correctly classified to label y;, while
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margin(x(k), yi) < 0 means label y; is irrelevant to evidence xk),
We the use the following function when considering each labels of
all evidences:

4

ldyn =

Z Z log [1 + exp(—margin(x(k), i)

xK)ex y,-eY(k>

Finally, by combining Equation(2) and Equation(4), we obtain
our multi-task learning approach as follows:

€ =lpam + layn — 1110l ®)

where A is the regularization constant and © is the model parameters
we need to learn (i.e. ® = {WPvXICl yI T1xIClyy,

3.3 Learning and Prediction

In order to learn parameters of DPAM model, we use the stochastic
gradient decent algorithm. For each iteration, we update the param-
eters of our model according to Equation(5). However, the direct
optimization of task PAM according Equation(2) is intractable due
to the high computational cost of the normalization term which is
proportional to 2IC1_ Therefore, we adopt the negative sampling
technique [24] for efficient optimization, which approximates the
original objective lyqpm, with the following objective function:

{NEG = Z

xR eX (yi,y;)€E(YR)

(1og (@« Frwyti)

+ neq - Egnea-p, [log o(~30TWG"9)] + log PUD, 10)))

where o(x) is the sigmoid function o(x) = 1/(1 + ™), npeq is
the number of “negative” samples, and %Y is the sampled vector,
drawn according to the noise distribution Py, which is modeled by
the empirical distribution over all the possible pairwise combina-
tions. As we can see, the objective of DPAM with negative sampling
aims to differentiate the ground truth from noise by increasing the
probability of the correct pairwise combination given the evidence
and deceasing that of any wrong combinations. We then apply sto-
chastic gradient descent algorithm to maximize the new objective
function for learning the model.

In the training phase, we found the improvement of our model
is not significant. The reason lies in the random initialization of
attention matrix by aggregating the word representations. Thus, in
the first a few iterations the attention matrix becomes a noise to our
model. To obtain a better performance, we design a new training
policy: For the first 1000 training iterations, we set P, 10y =1,
and after the “burn-in” period, we assume that we have obtained the
stable word representations, then we calculate our attention matrix
according Equation(1) in each iteration. Details of our learning
algorithm is shown in Algorithm (1):

With the learned parameters, the crimes classification strategy
is as follows. For each evidence x(k), the best label set is a combina-
tion of assignments with the highest score from each label given
the input, while satisfying that the score is larger than the label
threshold. The prediction process is as follows:

2,

yi ey

exp(z_}(e’ k)W*i)
1Y exp(ate W)

s(YR xRy = ti) (6)
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Algorithm 1 Framework of joint learning for our model

1: Initialize model ® = {WPVXICl vI TIXICI} randomly
2: iter =0

3: set npyrp = 1000

4: repeat

5: iter « iter +1

6: if iter < np,,, then

7: set P(1D) 1)) =1

8: fori=1,..,|X|do

9: for instance x(¥)

10: compute the gradient V(6) of Equation(5)
11: update model 8 « 0 + eV(0)

12: end for

13: else
14: compute P, 10)) according Equation(1)

15: end if

16: until (Coverage or t > num)
17: return {WPv*ICl I TIxICl},

where I(-) denotes the indicator function, s(Y®)|x(¥)) is the score
when feeding label set Y() to evidence x(¥). According to Equation
(6), for each evidence input, we only need to conduct a forward
computation to generate the scores for each label entry, and select
the combination of the highest one for each task under the condition
that the score is larger than the label threshold.

4 EXPERIMENTS

In this section, we conduct empirical experiments to verify the effec-
tiveness of our proposed DPAM framework on crimes classification.
We first introduce the experimental settings, then we compare our
DPAM to the baseline methods to demonstrate its effectiveness in
crimes classification.

4.1 Dataset

We conduct our empirical experiments over two real-world datasets
from China Judgments Online!. China Judgments Online is a web-
site authorized by Supreme People’s Court. It records judgement
documents from more than 3,000 courts across China since 2014. In
this study, we collected 40256 judgement documents related with
the Crime of Fraud and Civil action during the period from Jan.
2016 to June. 2016.

We first conduct some pre-process on our dataset. We remove
the dismissed documents, and then we extract all the article sets
and the evidences from the remaining judgement documents. After
preprocessing we obtain 17,160 evidences and 70 articles on the
Fraud dataset, and 4,033 evidences and 30 articles on the Civil
Action dataset. The statistics of the dataset are shown in Table 2.
Finally, we split all the datasets into two non-overlapping parts, the
training set and testing set, with a ratio 8:2.

!http://wenshu.court.gov.cn/Index
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Table 2: Basic statistics of the two legal case datasets for experiments.

. . #average #average article  #average article set
dataset #evidence #article . o\ .
evidence length  definition length per evidence
Fraud 17160 70 1455 136 4.1
Civil Action 4033 30 2533 123 2.4
0.7 0.5 0.5 0.8
0.4 1 o
0.6 | =
0.4 5
a €03 o £
Sos e o S o7l
z° g 2 S
= 0.2 2 =
= =03 g
0.4 o
0.1 =
0.3- 0.0 - 0.2- 0.6 -
DPM SPAM DPAM DPM SPAM DPAM DPM SPAM DPAM DPM SPAM DPAM

Figure 4: Performance comparison of the final DPAM model with its two sub-variant models DPM and SPAM on Fraud dataset

in terms of Marco-P, Macro-R, Macro-F1, and Jaccard.

4.2 Baseline Methods

We evaluate our model? by comparing with several state-of-the-art
methods on our dataset:

o POP: The top-K frequent labels in our training set is taken
as the prediction for each evidence in the testing set (In our
experiment, we set K=5).

e BSVM: A first-order multi-label method [10]. In this model,
each label prediction is regarded as a binary classification
problem, then a ranking approach is introduced for binary
classification with SVM. For implementation, we adopt the
publicly available library from LibSVM3.

e ML-KNN: ML-KNN [41] is a popular first-order multi-label
method. Based on statistical information derived from the
label sets of the neighboring instances of an unseen instance,
ML-KNN takes the maximum a posteriori principle to de-
termine the label set for the unseen instance. The code is
available in sklearn*

e BP-MLL: Backpropagation for Multi-Label Learning [40]
is a popular second-order approach. It is derived from the
popular Backpropagation Algorithm through employing a
novel pairwise error function to capture the characteristics of
multi-label learning. The code can be obtained from lamda®.

o TextCNN-MLL: A second-order multi-label method, which
uses a convolution network for input representation [15],
and employs a new error function similar to BP-MLL.

e CC: Classifier Chains [28] is a novel chaining method that
can model label correlations while maintaining an acceptable
computational complexity.

Zhttps://github.com/yangze01/DPAM
3http://www.csie.ntu.edu.tw/&jlin/libsvm/
*http://lamda.nju.edu.cn/code_BPMLL.ashx
Shttp://scikit.ml/
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For BSVM, ML-KNN, BP-MLL, TextCNN-MLL and CC, we use the
publicly available PV model [18] to obtain the evidence representa-
tions. For each model, we run 20 times by setting the dimensionality
k € {64,128,192, 256,320} on both two datasets. We compare the
average results of different methods and analyze the results in the
following sections.

4.3 Evaluation Metrics

We use following evaluation metrics to evaluate the performance
of crimes classification.

e Jaccard similarity coefficients: The Jaccard coefficient is a
widely used multi-label classification metric [16], it measures
the similarity between two label sets, and it is defined as the
size of the intersection divided by the size of the union of
the label sets, which is as follows:

k
1 @ ayi
IXI & |y y yt(k)

ES['

Jaccard =

Y(k) denotes

where Y(¥) denotes the label set predicted, and Y, ¢,

the label set to be predicted .
e Macro-Averaging: The macro-average equally weights all
the labels, which is computed as follows:

IC]

1
Z Macro-P(j)
j=1

Macro-P —
IC]

IC]

1

C k
51 1y € YR&y; € YIE))

SR Iy € YO
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IC|
Macro-R = % ;Macro—R(j)
i g s s € YWy, € Y8, D)
Clag sy e
1 Sl 2 X Macro-P(j) X Macro-R(j)
Macro-F1 =

ﬁ = Macro-P(j) + Macro-R(j)

where I(+) is an indicator function, Macro-P(j), Macro-R(j) represent
the macro precision and macro recall of the j-th label in our dataset,
respectively.

4.4 Performance of two sub-models

First, we evaluate the effectiveness of the two sub-models. The
purpose is to test whether it is beneficial when introducing the
attention matrix and the dynamic threshold mechanism respec-
tively. To compare we apply an uniform treatment by setting the
dimensionality for both sub-models as 320, and report the results
on two datasets.

4.4.1 Performance of Attention Matrix. In this section we con-
sider the impact of attention matrix to our model. For our model
DPAM, we replace the dynamic threshold mechanism by a simple
Cutting Point [7, 32] procedure to determine the label set size for
each evidence. We name the new model as the Static Pairwise At-
tention Model (SPAM for short). We further ignore the attention
matrix learned by label descriptions (i.e., set a fixed score for each
element in the attention matrix), and we name the degenerated
model as the Static Pairwise Model (SPM for short). Table 3 shows
the performance comparison of the two methods. From the results
we have the following observations:(1)SPAM performs better than
SPM on nearly all the evaluation metrics for both of the datasets,
for example, the relative performance improvement on the Fraud
dataset over Macro-R, Macro-F1, and Jaccard is around 1.8%, 1.1%,
and 1.3%, respectively.(2)Comparing with SPM, the performance
improvement of SPAM on Macro-P metric is slight. The underlying
reason can be that though SPAM can predict more correct labels
compared with SPM, it does not handle the threshold problem
properly. In the prediction procedure, some unconfident labels are
also recommended for each evidence, and thus the performance
improvement on Macro-P is not significant.

4.4.2  Performance of Dynamic Threshold Predictor. We further
analyze the impact of dynamic threshold mechanism in our model.
For our model DPAM, we again make degeneration on it by ig-
noring the weights in the attention matrix, and the new model
is denoted as the Dynamic Pairwise Model (DPM for short). We
compare our DPM with several popular threshold mechanisms, i.e.,
the cutting point strategy and the linear mechanism, and the results
are shown in Table 4. From the result we have the following obser-
vation: (1)The linear mechanism [10, 42] performs better than an ad
hoc threshold calibration technique [6, 32]. (2)Our DPM performs
better than linear mechanism. Take fraud dataset as an example,
the relative performance improvement on Macro-P, Macro-F1, and
Jaccard by our model is around 3.1%, 0.5%, and 0.5%, respectively.
(3)Comparing with the linear model, we find that DPM does not
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Table 3: Performance comparison over SPM and SPAM on
crimes classification in terms of different evaluation met-
rics. Improvements of SPAM over SPM on Macro-R, Macro-
F1 and Jaccard (when applicable) are significant at p = 0.05.

dataset method Macro-P Macro-R Macro-F1  Jaccard
SPM 0.572 0.372 0.430 0.768
Fruad
SPAM 0.574 0.390 0.441 0.781
Civil SPM 0.645 0.322 0.424 0.623
Action SPAM 0.649 0.340 0.448 0.626

Table 4: Performance comparisons over Cutting Point, lin-
ear model, and DPM on crimes classification in terms of dif-
ferent evaluation metrics.

dataset  method Macro-P Macro-R Macro-F1 Jaccard
Cutting Point  0.560 0.371 0.425 0.762
Fruad Linear model 0.573 0.372 0.428 0.767
DPM 0.604 0.377 0.433 0.772
Cutting Point  0.513  0.201 0.183 0.438
Civil Action Linear model 0.393 0.204 0.185 0.435
DPM 0.653 0.329 0.457 0.613

achieve a significant improvement on Macro-R. The reason is that
our dynamic threshold mechanism focuses on how to learn a ro-
bust threshold margin to remove the unconfident labels for each
evidence, thus it tends to perform better on the Macro-P metric
than the Macro-R metric.

4.5 Comparison against two sub-models

In this section, we further compare the two sub-models SPAM and
DPM as well as our hybrid model DPAM to show the differences
between them. Figure 4 shows the performance comparison of these
three models.

An interesting observation is that SPAM obtains a better perfor-
mance on Macro-R than DPM, while DPM performs better than
SPAM on Macro-P. It implies that SPAM can well alleviate the la-
bel imbalance problem by introducing the attention matrix, and
DPM can perform well by adjusting thresholds when predicting
the label sets. Finally, by jointly learning two sub-models through
a multi-task learning method, our model DPAM obtains the best
performance on all evaluation metrics.

4.6 Comparison against Baselines

We further compare our model DPAM to the state-of-the-art base-
line methods on crimes classification task. The performance results
over the two datasets are shown in Figure 5. We have the following
observations from the results:(1)It is not surprising to see that the
POP method obtains the worst performance in terms of all the eval-
uating indicator, indicating that the crimes classification problem is
not an easy task. This is due to the fact that the label set distribution
in judicial field is disperse, thus predicting the same label set for
each evidence is not a proper choice.(2)The first-order methods
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Figure 5: Performance comparison of DPAM among POP, BSVM, ML-KNN, BP-MLL, CC, and TextCNN-MLL over Fraud dataset.

The dimensionality is increased from 64 to 320.

(BSVM, ML-KNN) perform better than POP method. (3)The second-
order approaches perform better than the first-order approaches,
and it verifies that modeling the correlation among multiple labels
can improve the performance. Take Fraud dataset as an example, the
relative improvement of BP-MLL over BSVM is about 24.4% in term
of Macro-F1 when setting the dimensionality as 320. (4)TextCNN-
MLL performs better than BP-MLL, it shows that by learning repre-
sentations through a deep neural model, we can achieve a better
performance than the method (BP-MLL) based on representations
learned in a shallow model (i.e. PV). This result is quite consistent
with the previous findings in [15].(5)CC performs better than BSVM,
but with limited improvement. The reason is that as a chaining
method, CC is influenced by the Error Propagation [17], i.e., when a
classifier misclassifies an example, the incorrect class label is passed
on to the next classifier that uses this label as an additional attribute.
An incorrect value of this additional attribute may then sway the
next classifier to a wrong decision.(6)Finally, when utilizing the
multi-task learning paradigm to learn the threshold predictor and
multi-label classification jointly, our DPAM obtains the best per-
formance on all the evaluation metrics. For example, comparing
with the second-best method (TextCNN-MLL) when setting the
dimensionality as 320, the relative performance improvements of
DPAM is around 2.5%, 4.3%, 3.5% and 2.0% in terms of Macro-P,
Macro-R, Macro-F1, and Jaccard, respectively. The improvements
are statistically significant (p-value < 0.01) over TextCNN-MLL.

4.6.1 The impact of training Policy. To learn the proposed DPAM,
we utilize the burn-in procedure for optimization. One parameter
in this procedure is the number of burn-ins we need to set, denoted
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Figure 6: Performance variation in terms of Macro-F1

against the number of burn-in on two datasets. The number
of burn-in is increased from 0 to 1200.

as Ny, . Here we investigate the impact of the ny,,,,, on the final
performance.

Specifically, we tried ny,,,-, € {0, 200, 400, 600, 800, 1000, 1200}
on the Fraud dataset. Figure 6 shows the test performance of DPAM
in term of Macro-F1 against the number of burn-in when setting
the dimensionality as 320.

From the results we find that: (1) As the burn-in number ny,,,,,
increases, the test performance in terms of Macro-F1 increases
too.(2)As the burn-in number ny,,,, increases, the performance
gain between two consecutive trials decreases. For example, when
we increase np,,,, from 800 to 1000, the relative performance im-
provement in terms of Macro-F1 is about 0.3%. It indicates that after
800 iterations, we have obtained stable word representations, and if
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Figure 7: Performance comparison among different label group size. The x-axis represents the label size modeled, y-axis rep-
resents the performance in terms of different evaluations metrics.

we continue to burn more iterations, there will be less performance
improvement but larger computational complexity. Therefore, in
our performance comparison experiment, we set ny,,,, as 1000 on

the Fraud dataset, and results are similar on the civil action dataset.

4.7 Case Study

To obtain a better understanding why DPAM performs better than
other models, in this section, we conduct the case study to compare
DPAM and the second-best model TextCNN-MLL qualitatively. Take
Fraud dataset as an example, we first sort all the 70 articles according
their frequency of occurrence in our dataset, then we split the sorted
labels into 7 groups, where each group contains 10 labels. In this
way, the first group contains the most frequent 10 labels, while the
7-th group contains the sparsest 10 labels.

Given this, we compare the two models mentioned above on
the first group, and we repeat the process six times, each time
we add the next label group into comparison. By this we want to
test whether DPAM can perform well when faced with the label
imbalance problem. The results are shown in Figure 7, and we
have the following observations:(1)The performance of DPAM and
TextCNN-MLL decrease when considering more labels, and this
is consistent with the expectation that feeding sparse labels will
degrade the performance.(2)Comparing with TextCNN-MLL, DPAM
shows no significant improvement on all evaluation metrics when
modeling the first 4 label groups, and this verifies that the attention
matrix is not working when all of the labels occur frequently in the
dataset. (3)DPAM outperforms TextCNN-MLL in all the evaluation
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metrics since we add the 5-th group. An interesting observation
is that performance gain between DPAM and TextCNN-MLL is
increasing when adding the remaining groups one by one. It implies
that DPAM can alleviate the label imbalance problem by introducing
the attention matrix into the modeling.

5 CONCLUSION

In this paper, we address the problem of crimes classification in
juridical scenario, and we cast it as the multi-label problem. A Dy-
namic Pairwise Attention Model (DPAM for short) is proposed to
predict the article set for each evidence. By introducing an attention
matrix learned from article definitions, our model can alleviate the
label imbalance problem. A dynamic threshold predictor mecha-
nism is further proposed to learn a robust threshold for each article
atomically. Finally, we adopt the multi-task learning paradigm to
learn multi-label classification and the threshold predictor jointly,
which can improve the generalization performance by leveraging
the information contained in the two tasks. We conduct experiments
on two real-world datasets, and verified that our approach can out-
perform many state-of-the-art baseline methods consistently under
different evaluation metrics.

In DPAM, we used a TextCNN to obtain the evidence represen-
tations. However, in juridical field, some keywords in evidence,
such as murder, robbery, are also valuable for judges to classify the
evidences. Feeding these keywords with other words in evidences
into a united model may weaken the significance of the keywords.
In the future, we will analyze the significance of keywords to crimes
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classification, and it would be interesting to analyze the interactions
between the keywords and the evidences.
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