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ABSTRACT
Sequential recommendation aims at predicting users’ preferences

based on their historical behaviors. However, this recommendation

strategy may not perform well in practice due to the sparsity of the

real-world data. In this paper, we propose a novel counterfactual

data augmentation framework to mitigate the impact of the imper-

fect training data and empower sequential recommendation models.

Our framework is composed of a sampler model and an anchor

model. The sampler model aims to generate new user behavior

sequences based on the observed ones, while the anchor model is

leveraged to provide the final recommendation list, which is trained

based on both observed and generated sequences. We design the

sampler model to answer the key counterfactual question: “what

would a user like to buy if her previously purchased items had been

different?”. Beyond heuristic intervention methods, we leverage

two learning-based methods to implement the sampler model, and

thus, improve the quality of the generated sequences when training

the anchor model. Additionally, we analyze the influence of the

generated sequences on the anchor model in theory and achieve

a trade-off between the information and the noise introduced by

the generated sequences. Experiments on nine real-world datasets

demonstrate our framework’s effectiveness and generality.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
In the past few years, many sequential recommendation models

have been proposed and achieved encouraging performance on

various application scenarios. These models leverage sophisticated

mechanisms to predict users’ preferences from their historical be-

haviors. For example, the representative FPMC model [24] captures

the sequential user-item interactions by a two-order Markov chain.

Recently, more cutting-edge models like recurrent neural networks

(RNNs) [19, 21], convolutional neural networks (CNNs) [28, 31]

and memory networks [4, 15] are applied to model the long-term

dependencies among user behaviors. Essentially, the sequential

recommendation models above capture the joint distribution of

two or more items based on their occurrence in a sequence, which

makes them require much more high-quality sequential data for

training compared with the non-sequential models. Unfortunately,

this demand conflicts with the sparse nature of the real-world data

— N items have N ! permutations, but the sequences observed in

practice can only cover extremely few of them. Figure 1 illustrates

this problem for the E-commerce scenarios. We may observe that a

user purchased a camera, a camera battery, and a battery charger

over time. Generally, purchasing the camera is likely to trigger

different subsequent items, such as a camera lens and lens cleaner,

a roll film and a photo album, and so on. Although such potential

sequences are intuitively reasonable and informative for training

sequential recommendation models, they may not be recorded for

various reasons (e .д., the security and privacy issues and the limita-

tions on time, human resource, and budgets). From the perspective

of causal inference [2, 3, 6], these unrecorded sequences are coun-
terfactual data, which provide answers to a key counterfactual

question: “What would a user like to buy if her previously
purchased items had been different?”. As a significant comple-

mentary resource of the observed sequences, the counterfactual

sequences can more comprehensively reveal the user preference
1

and thus help training a sequential recommendation model with

good precision and generalization power. Motivated by the analysis

above, we propose a novel framework to achieve Counterfactual
Data-Augmentation Sequential Rcommendation (called CASR for

short). The CASR framework enriches sequential data and improves

1
As shown in Figure 1, when replacing the camera battery in the sequence with a

camera lens, the sequence ends with a lens cleaner rather than the battery charger.
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Figure 1: An illustration of our framework for counterfac-
tual data-augmented sequential recommendation.

sequential recommendation models. As illustrated in Figure 1, the

CASR framework is composed of a sampler model and an anchor

model. Driven by the aforementioned counterfactual question, the

sampler model generates counterfactual sequences from the real

ones. The anchor model provides the final recommendation list

and is trained based on both real and counterfactual sequences.

We first implement a naive sampler model that generates new se-

quences by substituting the items of the real sequences randomly.

Beyond this heuristic method, we further develop two types of

learning-based sampler models called data- and model-oriented

methods, respectively. The data-oriented method is able to generate

new sequences which are near the decision boundaries, while the

model-oriented method aims at maximizing the information of the

new sequences provided to the anchor model. Based on the theory

of probably approximately correct (PAC) learning [25], we analyze

the relation between the number of generated sequences and the

noise level of the sampler model. Accordingly, we design a simple

but effective controlling mechanism for the proposed framework

to achieve a trade-off between the noise and the information in

the generated sequences. Our CASR framework is applicable to

most existing recommendation systems, in which the sampler and

anchor models can be implemented by various sequential architec-

tures. The experiments on nine real-world datasets demonstrate

the usefulness of our framework — from the results, we can ob-

serve consistent improvement comparing with the state-of-the-art

sequential models.

In a summary, the main contributions of this paper can be con-

cluded as follows: (1) We propose a novel framework to empower

sequential recommendation models with counterfactual data. To

the best of our knowledge, our work makes the first attempt to

leverage the idea of counterfactual thinking in the recommendation

domain. (2) We implement the above idea in three ways, developing

a heuristic and two learning-based samplers to generate counterfac-

tual sequences. (3)We theoretically analyze the noisy information in

the counterfactual data and propose a simple but effective strategy

to ensure the informativeness of the generated sequences. (4) We

conduct extensive experiments based on nine real-world datasets

to verify our framework’s effectiveness and generality.

2 THE CASR FRAMEWORK
2.1 Sequential Recommendation
Suppose that we have a user setU and an item set I. We denote

T as the user-item interaction set
2
. Usually, T is organized as

{({ui ,t
1

i ,t
2

i , ...,t
li
i },t

li+1
i )}Ni=1 = {Ti , t

li+1
i }Ni=1, where each ui ∈ U

and tk=1, ...,li ∈ T . In the i-th sample in T , the items interacted with

the userui in history is represented as a sequenceTi = {t1i ,t
2

i , ...,t
li
i }

and t li+1i is the next item. Given {U,I,T }, sequential recommen-

dation aims at modeling the impact of the historical items on the

next one, and accordingly, predicting the users’ future preferences.

To achieve this aim, we often learn a probabilistic model, denoted

as A, by solving the following optimization problem:

max

A

∏
(Ti ,t

li +1
i )∈T∪T−

logA(t li+1i |Ti )
yi (1 − A(t li+1i |Ti ))

(1−yi )
(1)

whereA outputs the probability of interacting with t li+1i given the

history informationTi .T−= {({us ,t1s , t
2

s , ..., t
ls
s },t

ls+1
s )}Ms=1 is the set

of negative samples, and t ls+1s is randomly selected from the items

not interacted by us . The label yi = 1 if (Ti ,t
li+1
i ) ∈ T , otherwise

yi =0. In the past few years, people have explored different models

like CNN [28], RNN [19] or even transformer [17] to implement

A, but little attention has been paid to the sparsity of the training

data, which may pose great challenges for learning reliable item

correlations and achieving better recommendation performance.

To mitigate this problem, we establish a novel framework called

CASR for training sequential recommendation models.

Our CASR framework is inspired by the human introspection

behaviors, such as “what if I took another road?” and “what if I

bought a lens after a camera?”. Such behaviors are described by

the concept of counterfactual thinking in the causal inference do-

main [1, 6], which helps to explore (or imagine) the potential results

of the alternative previous actions. The key counterfactual question

for sequential recommendation is “what would a user buy if her pre-

viously purchased items had been different?”. As shown in Figure 1,

beyond training a sequential recommendation model A (i .e ., the
anchor model), our CASR framework introduces a sampler model,

denoted as S, to answer this counterfactual question by generating

counterfactual sequences. In our framework, both S and A are

pre-trained based on the original dataset in the beginning. Then,

the counterfactual sequences produced from S are leveraged to

re-optimize A, which is finally leveraged to provide the recom-

mendation list. Clearly, the key of our framework is the design of

the sampler, which has a significant influence on the quality of the

generated sequences. We implement the sampler based on both

heuristic and learning-based methods, which will be introduced in

the following contents.

2.2 Heuristic Sampler
Themost straightforwardway to generate counterfactual sequences

is replacing the historical items with the other ones in a random

manner. For a training sample ({u, t1, t2, ..., t l }, t l+1) ∈ T , we first

indicate an index d , and replace td with a random item ta . Then,

2
In practice, interact can be click, purchase, add to shopping cart and etc ..



we bring {u, t1, ..., td−1, ta, td+1, ..., t l } into S to derive the next

item t̂ l+1, that is,

t̂ l+1 = arg maxt ∈I S(t |u, t
1, ..., td−1, ta, td+1, ..., t l ) (2)

At last, ({u, t1, ..., td−1, ta, td+1, ..., t l }, t̂ l+1) is the generated coun-
terfactual sequence. This heuristic sampler model is easy to im-

plement. However, it has too many degree of freedom, and thus,

introduce too much randomness into the generated sequences. It

has been studied in the previous work [6, 7, 29] that different sam-

ples are not equally important for model optimization. To guarantee

the effectiveness of the generated sequences on the anchor model’s

optimization, we need to design some samplers with more reason-

able mechanisms.

2.3 Learning-based Samplers
In order to make the generated sequences more effective, in this sec-

tion, we improve the heuristic sampler by learning-based methods

from the data and model perspectives, respectively.

Data-oriented counterfactual sequence learning. In a clas-

sification problem, the input feature space can be split into many

subspaces according to different output labels. The borders between

different input subspaces are referred as the decision boundaries.

For the samples near the decision boundaries, the labels can be

easily altered even with a small change on the input features. As

demonstrated in the previous work [1, 9], these decision bound-

ary samples are usually discriminative in revealing the underlying

data patterns, and training based on them may lead to improved

model performance. Our data-oriented sampler is motivated by

this principle, and we generate the counterfactual sequence by

“minimally” changing the user’s historical items, such that her cur-

rently interacted item can be “exactly” altered. Formally, suppose

et ∈ RD is the embedding of item t , we measure the change of

the user behaviors based on the embedding space. For a given real

sequence ({u, t1, t2, ..., t l }, t l+1) ∈ T and an index d , we optimize

the following objective:

minta ∈C ∥eta − etd ∥
2

2

s.t. t l+1 , arg maxt ∈I S(t |u, t
1, ..., td−1, ta, td+1, ..., t l )

(3)

where eta and etd are the embeddings of the changed and origi-

nal items. C indicates the item set for replacement, which can be

specified as I or other set to involve prior knowledge. In this equa-

tion, the objective aims to minimize the distance between the item

embeddings before and after the change (i.e., minimally changing

the user’s past behavior). The constraint ensures that the current

item is no longer t l+1. By combining them, we would like to change

the past behaviors in a minimum manner, such that the current

item can be exactly altered. Once we obtained ta , the final coun-

terfactual sequence is ({u, t1, ..., td−1, ta, td+1, ..., t l }, t̂ l+1), where

t̂ l+1 is derived according to equation (2). By such “minimum-exact”

optimization, in the generated counterfactual sequence, some small

change on ta will make the distance ∥eta −etd ∥
2

2
not large enough

to alter t l+1, i.e., the current item t̂ l+1 will return to the original

item t l+1, which implies that the counterfactual sequences are near

the decision boundaries. An intuitive illustration of this method

can be seen in Figure 2.
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Figure 2: Illustration of the learning-based samplers. In the
data-oriented method, the “feeding bottle” is replaced by
a “baby bed”, which exactly change the next item from
baby feeding items to baby beddings. In the model-oriented
method, the “milk” can induce a counterfactual sequence
with the largest anchor model loss, which is selected as the
replacement item.

In practice, themajor challenge comes from the non-differentiable

nature of objective (3). To solve this problem, we introduce a “vir-

tual” item t ã , and its embedding is et ã = etd + ∆, where ∆ is a

continuous vector indicating the distance between t ã and td . Our
general idea is firstly learning et ã in a differentiable manner, and

then projecting et ã to the nearest real item. In order to learn et ã ,
we relax objective (3) to the following differentiable target:

min

∆∈RD
∥∆∥2

2
+ αS(et l+1 |eu ,et 1 , ..,etd−1 ,etd + ∆,etd+1 , ..,et l ) (4)

where we replace the item IDs in equation (3) with their embed-

dings for clear presentation, and ∆ is the only learnable parameter.

The first term aims to minimize the distance between the virtual

and real items, that is, minimizing the change of the user behaviors.

The second term penalizes the larger probability of interacting with

the true current item et l+1 , in other words, et l+1 is not expected
to be predicted by S. Thus, this term plays a similar role as the

constraint in (3). α is a tuning parameter balancing different ob-

jectives. Once we obtained et ã , the replacement item ta is derived

according to the following projection method:

ta = arg minta ∈C ∥et ã − eta ∥
2

2
, (5)

Model-oriented counterfactual sequence learning. Besides
the two samplers described above, the third potential implemen-

tation is a model-oriented method. This method is motivated by

the work in [6, 7], which leverages the principle that the samples

with larger loss can usually provide more knowledge to widen the

model’s experience and improve the model performance. In our

framework, we learn the counterfactual sequences via maximizing

the loss of the anchor model, and an intuitive illustration of this

method is provided in Figure 2. Formally, given a training sequence

({u, t1, t2, ..., t l }, t l+1) ∈ T and an index d , we solve the following



optimization problem:

maxta ∈C − logA(t̂
l+1 |u, t1, ..., td−1, ta, td+1, ..., t l )

s.t. t̂ l+1 = arg maxt ∈I S(t |u, t
1, ..., td−1, ta, td+1, ..., t l )

∥eSta − e
S

td
∥2
2
≤ λ

(6)

where the objective is to maximize the loss of the anchor model
3
,

the first constraint states that the sequence is generated based on

S. The second constraint controls the distance between the revised

and original item embeddings. Smaller λ means that eSta should be

selected near the original item embedding, while larger λ allows

eSta to be explored in a broader space.

To make this objective more tractable, we adopt a similar method

as used in the data-oriented method. We introduce a “virtual” item

t ã , whose embedding is ∆-away from that of td . We denote EFu =

{eu ,e
F

t 1 , ...,e
F

td−1
,eF

td
+∆,eF

td+1
, ...,eF

t l
} as the collection of the user

and revised item sequence embeddings, where F is either A or S.

We soften the selection process of t̂ l+1 to make the objective fully

differentiable, and the relaxed objective is:

max

∆∈RD
−

|I |∑
i=1

exp (τS(eSi |E
S
u ))∑ |I |

j=1 exp (τS(e
S
j |E
S
u ))

logA(eAi |E
A
u ) − β | |∆| |

2

2
(7)

where β is a tunning parameter controlling the importance of

the distance constraint. − logA(eAi |E
A
u ) is the loss on the sample

when i is the current item.

exp (τ S(eSi |E
S
u ))∑|I |

j=1 exp (τ S(e
S
j |E

S
u ))

imposes a softmax

layer upon S, indicating the probability of interacting with item

i . By multiplying them, the first term of equation (7) is actually

computing the expectation of the anchor model loss supported by

I. τ is the temperature parameter, which tunes the softness of the

item distribution. When τ → 0, all the items are equally considered

in the expectation. When τ → ∞, the mass of the distribution is

concentrated to a single item, and the expectation is reduced to the

argmax operation as used in the original objective (6).

Remark. Basically, data-oriented method learns the counterfactual

sequences based on the underlying patterns of the training data.

This is a “bottom-up” method, which is model agnostic, i.e., do

not rely on the specific anchor model. In contrast, model-oriented

method learns the counterfactual sequences under the guidance

of the anchor model, which is a “top-down” method, and highly

depends on the model it serves for. These methods are designed fol-

lowing different principles, and may play different roles in practice.

2.4 Learning Algorithm
We summarize the complete learning algorithm of our framework

in Algorithm 1. To begin with, the sampler model S and anchor

modelA are both optimized based on the observed dataset T . After

indicating the number of running timesM and the index d , in each

iteration, the sampler model is executed on the observed sequence

to generate the counterfactual sequence. Once we have collected

the whole counterfactual dataset Tc , the anchor model is retrained

based on T ∪ Tc . There are three implementations of the sampler

3
This objective is derived by bringing yi = 1 into equation (1).

Algorithm 1: Learning Algorithm of CASR

1 Pre-train S and A based on the observed dataset T .

2 Initialize the counterfactual dataset Tc = ∅.

3 Indicate the number of running times M.

4 Indicate the index d .

5 for i in [0, M] do
6 Select a training sample ({u, t1, t2, ..., t l }, t l+1).

7 Heuristic Method:
8 Randomly select an item ta .

9 Change the input sequence as

{t1, ..., td−1, ta, td+1, ..., t l }
10 Derive t̂ l+1 by equation (2).

11 Tc ← Tc ∪ ({u, t
1, ..., td−1, ta, td+1, ..., t l }, t̂ l+1).

12 Data-oriented Method:
13 Learn the distance vector ∆ by equation (4).

14 Derive ta by equation (5).

15 Derive t̂ l+1 by equation (2).

16 if t̂ l+1 , t l+1 then
17 Tc ← Tc ∪ ({u, t

1, ..., td−1, ta, td+1, ..., t l }, t̂ l+1).

18 end
19 Model-oriented Method:
20 Learn the distance vector ∆ by equation (7).

21 Derive t̂ l+1 by bring t ã into equation (2).

22 Tc ← Tc ∪ ({u, t
1, ..., td−1, t ã, td+1, ..., t l }, t̂ l+1).

23 end
24 Train A based on T ∪ Tc .

model to generate the counterfactual sequences. In the heuristic

sampler, the replacement item ta is determined in a randommanner

without any constraint. The next item, and accordingly, the whole

counterfactual sequence are derived based on equation (2). In the

learning-based samplers, the replacement items are selected by

learning to achieve some reasonable targets. More specifically, in

the data-orientedmethod, a virtual item embedding is firstly learned

to achieve the decision boundary sample in a differentiable manner

based on equation (4). Then the virtual item is projected to the

nearest real replacement item based on equation (5). Similar to the

heuristic sampler, the next item is derived based on equation (2), but

to ensure that it is different from the original item, there is a further

check on whether t̂ l+1 , t l+1. In the model-oriented method, the

virtual item embedding is learned based on equation (7), which is

directly used as the replacement item without approximation, and

its embedding is eA
td
+∆. Careful readers may find that, this method

is basically playing an adversarial game. The critical sequences

are generated to maximize the anchor model loss, which is later

minimized to learn the parameters inA. In this way, the generated

sequences can well challenge the anchor model, which broadens the

views of the anchor model and helps to achieve better performance.

2.5 Theoretical Analysis
In our framework, the current interacted item is estimated based

on equation (2). However, the sampler model S may be not per-

fect, and its predicted results may contain noise. In this section, we



theoretically analyze our method within the PAC learning frame-

work [25]. We would like to answer: “given the noise level of the

sampler model, how many samples one need to achieve sufficiently

well performance?”. Suppose д ∈ {0, 1} is the true result of whether
a product is the real current item, and S can correctly estimate д
with the probability of 1 − η, where η ∈ (0, 0.5) indicates the noise
level of S. If S can exactly recover д (i.e., η = 0), then the generated

sequences are perfect without any noise. On the contrary, η = 0.5

means that S can only produce random results, and the generated

sequences are fully noisy. Then we have the following theory:

Theorem 1. Given a hypothesis classH , for any ϵ, δ ∈ (0, 1) and
η ∈ (0, 0.5), if A ∈ H is the anchor model learned based on the
empirical risk minimization (ERM), and the sample complexity (i.e.,

number of samples) is larger than
2 log (

2|H|

δ )

ϵ 2(1−2η)2 , then the error between
the model estimated and true results is smaller than ϵ with probability
larger than 1 − δ .

Proof. Suppose the prediction error of A is s (i.e.,
∑
I(дA ,

д) = s),4 then the mis-matching probability between the observed

and predicted results comes from two parts: (1) The observed result

is true, but the prediction is wrong, that is, s(1−η). (2) The observed
result is wrong, but the prediction is right, that is (1 − s)η. Thus,
the total mis-matching probability is η + s(1 − 2η).

The following proof is based on the reduction to absurdity. We

firstly propose an assumption, and then derive contradicts to inval-

idate the assumption.

• Assumption. Suppose the prediction error ofA (i.e., s) is larger
than ϵ , Then, at least one of the following statements hold: (1)

The empirical mis-matching rate of A is smaller than η +
ϵ (1−2η)

2
.

(2) The empirical mis-matching rate of the optimal h∗ ∈ H (i.e.,

the prediction error of h∗ is 0) is larger than η +
ϵ (1−2η)

2
. These

statements are easy to understand, since if both of them do not

hold, we can conclude that the empirical loss of A is larger than

that of h∗, which does not agree with the ERM definition.

• Contradicts. To begin with, we review the uniform convergence

properties [25] by the following lemma:

Lemma 2.1. Let H be a hypothesis class, then for any ϵ ∈ (0, 1)
and h ∈ H , if the number of training samples is m, the following
formula holds:

P(|R(h) − R̂(h)| > ϵ) < 2|H | exp (−2mϵ2) (8)

where R and R̂ are the expectation and empirical losses, respectively.

For statement (1), since the prediction error ofA is larger than ϵ ,
the expectation loss R(A) is larger than η+ϵ(1−2η). If the empirical

loss R̂(A) is smaller than η+
ϵ (1−2η)

2
, then |R(A)− R̂(A)| should be

larger than
ϵ (1−2η)

2
. At the same time, according to Lemma 2.1,

when the sample number m is larger than

2 log (
2|H|

δ )

ϵ 2(1−2η)2 , we have

P
(
|R(A) − R̂(A)| >

ϵ (1−2η)
2

)
< δ .

For statement (2), the expectation loss of h∗ is η, i.e., R(h∗) = η.

If the empirical loss R̂(h∗) is larger than η +
ϵ (1−2η)

2
, then |R(h∗) −

R̂(h∗)| should be larger than
ϵ (1−2η)

2
. According to Lemma 2.1,

4дA is the prediction from A.

when the sample number m is larger than

2 log (
2|H|

δ )

ϵ 2(1−2η)2 , we have

P
(
|R(h∗) − R̂(h∗)| >

ϵ (1−2η)
2

)
< δ .

As a result, both of the above statements holdwith the probability

smaller than δ , which implies that the prediction error of A is

smaller than ϵ with the probability larger than 1 − δ . □

From this theory, we can see: in order to guarantee some perfor-

mance with a given probability (i.e., ϵ and δ are fixed), one needs to

generate more than

2 log (
2|H|

δ )

ϵ 2(1−2η)2 sequences. If the noise level of S (i.e.,

η) is larger, than more sequences have to be generated. Extremely,

if S can only produce noisy information (i.e., η = 0.5), then infinity

number of samples are required, which is impossible in realities.

This theory reveals the relation between the number of generated

sequences and the potential noisy information contained in them,

which helps to understand our framework in theory.

Tuning the noisy information. Inspired by this theory, we

introduce a confidence parameter κ ∈ [0, 1) to control the noisy in-

formation. In specific, the new sequences are generated according to

equation (2) only whenmaxt ∈I S(t |u, t
1, ..., td−1, ta, td+1, ..., t l ) >

κ, that is, the sampler model has more confidence on the predicted

results. In such a method, when κ is larger, there can be less noisy

information. But at the same time, the number of counterfactual

sequences is smaller, which may impact the effectiveness of our

framework for improving the recommendation performance. If we

select a smaller κ, more sequences will be generated for sufficiently

training the anchor model, but the noise rate can also be increased.

Thus, κ controls the trade-off between the number and reliability

of the generated sequences. While such noise control method is

simple, it can achieve promising results in the experiments, and we

leave more advanced methods as the future work.

3 RELATEDWORK
Relation with sequential recommendation. Sequential recom-

mendation has recently attracted increasing attention from the

research community. It basically aims to discover the underlying

patterns of the user sequential behaviors. In this field, people have

designed quite a lot of models based on Markov Chain [11, 24],

RNN [14, 19, 21, 31], CNN [28], Memory Network [4, 15, 22] and

Transformer [26, 30]. These studies mostly focus on designing ad-

vanced architectures to model the observed data. However, as men-

tioned before, the recorded user sequential behaviors in a recom-

mendation dataset can be extremely insufficient. It is well known

that a machine learning problem includes two inseparable aspects,

i.e., “model” and “data”. Our framework aims to improve sequential

recommendation from the data perspective, which is orthogonal to

the prevailing model-based research in this field.

Relationwith counterfactual thinking.Counterfactual think-
ing is a concept describing the human introspection behaviors.

The typical question one may ask is: “what would ... if ...?”. In

the machine learning community, many people leverage counter-

factual thinking to design more explainable, robust and fair mod-

els [8, 9, 18, 32], which has achieved many promising results. An-

other important application of counterfactual thinking is augment-

ing the training samples for data-scarce tasks. Along this research

line, many successes have been witnessed in the fields of neural



Table 1: Statistics of the datasets used in our experiments.

Dataset # User # Item # Interaction Density Domain

MovieLens 6,040 3,629 836,478 3.82% Movies

Lastfm 1,860 2,824 71,355 1.36% Music

Book-Crossing 22,817 319,199 1,028,948 0.02% Books

Foursquare 2,288 7,056 128,530 0.80% Check-in

Jester 73,422 101 4,136,360 55.78% Jokes

Diginetica 33,364 43,589 223,562 0.02% E-commerce

Amazon-Video 5,131 1,686 37,126 0.43% E-commerce

Amazon-Baby 19,446 7,051 160,792 0.12% E-commerce

Amazon-Beauty 22,364 12,102 198,502 0.07% E-commerce

language processing (NLP) [35] and computer vision (CV) [2, 3, 6].

Our work falls into this category, and we realize the idea of coun-

terfactual thinking in the field of sequential recommendation. More

importantly, we provide theoretical analysis on the relation be-

tween the number of generated sequences and the potential noisy

information contained in them.

Relation with adversarial training. Adversarial training [5]
is a promising learning paradigm, which has shed lights on a

number of machine learning applications, such as image gener-

ation [16, 33], language generation [20] and robust recommender

system [12]. The basic idea of adversarial training is to introduce an

opponent into the model optimization process. The opponent aims

to set “difficulties” for the original model, which is optimized by

learning from these “difficulties”. In this work, we borrow the idea

of adversarial training to generate counterfactual sequences. The

adversarial game is played between the sampler and anchor models.

With the purpose of challenging the anchor model, the sequences

generated from the sampler model are effective for optimizing the

anchor model.

4 EXPERIMENTS
4.1 Experiment Setup
Datasets. In order to verify the effectiveness and generality of

our framework. We base the experiments on nine public available

datasets, which cover six various recommendation domains. In spe-

cific, MovieLens 1M5
is a dataset about user behaviors on watching

movies. Last.fm6
records user habits when listening to the music.

Book-crossing7 is a dataset about user preferences on the books.

Foursquare8 contains user check-in behaviors in NYC and Tokyo.

Jester9 is a dataset including user ratings on the jokes. Diginetica10,
Amazon-Instant-video, Amazon-Beauty and Amazon-Baby11 are e-
commerce datasets, each of which is composed of user purchasing

behaviors on the websites. The statistics of these datasets are sum-

marized in Table 1. Based on these quite different recommendation

domains, we would like to examine whether our framework is

generally effective for different user behavior patterns.

Baselines. We compare our model with the following represen-

tative models
12
: BPR [23] is a well know recommendation algo-

rithm for capturing user implicit feedback. NAIS [13] is a popular

5
https://grouplens.org/datasets/movielens/

6
http://millionsongdataset.com/lastfm/

7
http://www2.informatik.uni-freiburg.de/ cziegler/BX/

8
https://sites.google.com/site/yangdingqi/home/foursquare-dataset

9
http://eigentaste.berkeley.edu/dataset/

10
https://competitions.codalab.org/competitions/11161

11
http://jmcauley.ucsd.edu/data/amazon/

12
which is implemented in Bole1.0 [34] https://recbole.io/

attention-based neural recommender model. FPMC [24] is an early

sequential recommender model, where the behavior correlations

are captured by Markov chain. NARM [19] is a sequential rec-

ommendation model based on attentive recurrent neural network.

STAMP [21] is a neural sequential model by incorporating user

short-term memories and preferences. SASRec [17] is a sequential
recommendation model based on the self-attention mechanism.

Implementation details. In the experiments, each user’s inter-

acted items are chronologically organized into a session, which is

separated into many training samples recurrently. For example, if

the original session isABCD, then the generated samples areA→ B,
AB → C and ABC → D. Following the common practice, for each

user, the last and second last samples are used for model testing and

validation, while the others are left for training. Our framework is

executed on each sample in the training set. We evaluate different

recommendation models based on the well-known metrics includ-

ing F1 and NDCG, and we recommend 5 items to compare with

the ground truth. The hyper-parameters are determined based on

grid search. In specific, the learning rate and batch size are tuned in

the ranges of [10−1, 10−2, 10−3, 10−4] and [64, 128, 256, 512, 1024], re-

spectively. The regularization parameters α and β are both searched

in the range of {10i |i is an integer in [-5, 5]}. The influence of dif-

ferent confidence parameter κ’s and index d’s are discussed in the

following experiments. For the baselines, we set the parameters as

the optimal values reported in the original paper or tune them in

the same ranges as our model’s.

4.2 Overall Comparison
The overall comparison results are presented in Table 2, from which

we can see: among the baselines, NAIS and FPMC outperform BPR

in most cases. The winner between NAIS and FPMC varies across

different datasets. NAIS is able to capture the potential non-linear

feature correlations, while FPMC is better at modeling user sequen-

tial behavior patterns. We speculate that such different advantages

make them suitable for different recommendation scenarios, which

vary their performances on different datasets. By combining the

merits of neural network and the idea of sequential behavior mod-

eling, NARM, SASRec and STAMP exhibit better performance com-

paring with the other baselines, which is aligned with the previous

studies [17, 19, 21].

It is encouraging to see that the best performance of our frame-

work is better than all the baselines, and the improvement is consis-

tent on all the datasets and evaluation metrics. Considering that the

datasets span a large range of recommendation domains, this result

demonstrates the generality of our framework. Among different

data enrichment strategies, the heuristic method is the worst, for the

Diginetica dataset, it even lowers the performance of SASRec. This

observation manifests that while the random strategy is straightfor-

ward, it is usually suboptimal. The reason can be that the counterfac-

tual sequence space is very large, the randomly selected sequences

can be not critical for optimizing the anchor model, which lead to

the unsatisfied performance. Between the data- and model-oriented

methods, the latter can achieve better performance in most cases.

This is actually not surprising, since the sequences generated from

the model-oriented method are more targeted, which is tailored for

improving the anchor model. However, it should be noted that the



Table 2: Overall comparison between the baselines and our models. In the second module (line 6-9), we present the performance of the
original NARM and the results of applying our framework on NARM. The third and forth modules show the effectiveness of our framework
for SASRec and STAMP, respectively. In each module, we use bold fonts to label the best performance.

Datasets MovieLens Diginetica Book-Crossing Video Baby Beauty Foursquare Lastfm Jester

Metric (@5) F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG

BPR 1.47 2.73 3.33 7.11 0.35 0.66 4.33 9.62 0.60 1.17 1.17 2.33 2.13 4.37 0.35 0.67 7.98 22.14

NAIS 1.43 2.68 3.92 8.12 1.02 1.70 4.17 9.13 0.52 1.03 1.35 2.57 2.88 6.88 0.42 0.80 9.72 24.65

FPMC 2.67 4.67 6.67 13.35 0.43 0.93 3.83 7.59 0.63 1.20 0.98 1.77 2.40 2.40 2.05 4.19 8.77 17.09

NARM 4.93 9.45 7.15 14.45 0.50 1.12 4.50 9.53 0.90 1.69 1.33 2.57 3.55 7.27 2.75 5.53 7.25 14.69

H-NARM 5.07 9.46 7.72 15.35 1.07 2.44 5.48 10.84 0.95 1.79 1.67 3.19 4.33 8.52 4.97 9.65 11.68 27.01

D-NARM 5.18 9.59 8.32 16.71 1.13 2.68 5.90 11.85 1.12 2.07 1.73 3.29 4.33 8.62 5.05 9.82 11.87 27.27

M-NARM 5.27 9.67 8.32 16.72 1.22 2.89 5.88 11.95 1.22 2.27 1.75 3.36 4.33 8.79 5.10 9.99 11.98 27.47

SASRec 4.73 8.77 8.15 16.68 0.92 1.83 4.95 8.48 0.85 1.57 1.32 2.44 3.97 7.43 2.65 5.11 7.43 15.08

H-SASRec 4.75 8.77 6.65 ↓ 13.64 ↓ 1.03 1.93 5.52 9.75 0.98 1.89 1.58 3.04 4.55 9.04 4.75 9.18 11.13 25.82

D-SASRec 4.93 9.05 8.77 17.27 1.27 2.32 5.98 10.41 0.98 1.89 1.62 3.12 4.75 9.17 4.90 9.37 11.58 26.82

M-SASRec 4.95 9.07 8.82 17.34 1.32 2.51 6.07 10.54 1.02 1.92 1.67 3.15 4.63 9.33 4.93 9.50 11.92 27.41

STAMP 4.57 9.16 7.18 14.71 0.80 1.87 4.55 9.41 0.77 1.40 1.30 2.67 3.38 6.74 2.77 5.48 7.45 14.98

H-STAMP 4.75 9.35 7.83 15.87 1.15 2.61 5.47 10.15 0.83 1.65 1.72 3.28 3.85 8.09 4.30 9.12 10.47 25.09

D-STAMP 4.82 9.45 7.90 16.02 1.23 2.80 5.75 11.73 0.88 1.71 1.75 3.35 3.92 8.20 4.35 9.26 10.58 25.48

M-STAMP 4.92 9.58 7.95 16.14 1.25 2.94 5.83 11.97 0.92 1.76 1.70 3.45 4.00 8.34 4.35 9.45 11.00 26.05
1
All the numbers are percentage values with “%” omitted, and we use ↓ to label the lowered performances after using our framework.

2
We use “H-X”, “D-X” and “M-X” to represent the heuristic, data- and model-oriented methods when the anchor model is “X”.

3
The prefix of Amazon-Video, Amazon-Baby and Amazon-Beauty are removed for simplicity.

Figure 3: Influence of the number of generated sequences.

Figure 4: Influence of the iteration number.

better performance of the model-oriented method is achieved by

using the information of the anchor model. If we do not know the

anchor model in advance, this strategy can be unavailable. While

the performance of the data-oriented method is slightly worse, it

is model agnostic, and can be leveraged in a pre-training fashion,

which can simultaneously serve for different anchor models.

4.3 The Number of Generated Sequences
In this section, we investigate the influence of the number of gener-

ated sequences. Suppose the size of the training set is N, we control

the number of generated sequences by running our framework on

r% of the complete training set. We tune r in [20, 40, 60, 80, 100], and
the intervened sequences are randomly selected. The parameters

are set as their optimal values tuned in the above experiments. Due

to the space limitation, we present the performance of NDCG@5

on the datasets of Video, Diginetica, Foursquare and Lastfm, respec-

tively. The results on the other datasets and F1@5 are similar and

omitted. For each dataset, the sampler and anchor models are se-

lected when their combinations can achieve the best performance

according to Table 2 and 3.

From Figure 3, we can see: in general, the performances of differ-

ent data enrichment strategies continue to rise until reaching some

optimal values, and then the results remain stable or go down as r
becomes larger. In order to achieve similar performance, heuristic

method may need to involve more training sequences. This observa-

tion is interesting, we speculate that the heuristic method can be too

arbitrary, which makes the sample utilization efficiency not high.

In contrast, the data- and model-oriented methods can effectively

discover the key information and generate critical sequences, which

results in similar performance even with fewer training samples.

Careful readers may be curious about that if we further run our

framework on the generated counterfactual sequences, then how

would the produced data influence the final performance? Actually,

such process can be iteratively proceeded
13
, and the number of

iteration times is defined as L. To answer the above question, we

tune L in the range of [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], and the results are

presented in Figure 4. We can see: in most cases, the performance

13
It should be noted that the framework is only run on the most recently generated

samples, since running on the former data can lead to exactly same samples which

have already been generated.



Table 3: Influence of different sampler models. In the first column, we present the data enrichment strategies, where H, D and M correspond
the heuristic, data- and model-oriented methods, respectively. The second column indicates the sampler model (abbreviated as S-Model). For
each anchor model, we present the original performance in the first row for reference.

Datasets MovieLens Diginetica Book-Crossing Video Baby Beauty Foursquare Lastfm Jester

Method S-Model F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG F1 NDCG

Original NARM 4.93 9.45 7.15 14.45 0.50 1.12 4.50 9.53 0.90 1.69 1.33 2.57 3.55 7.27 2.75 5.53 7.25 14.69

H

NARM 4.95 9.23 7.03 14.12 1.00 2.17 5.15 10.27 0.90 1.68 1.58 2.98 4.33 8.52 4.72 8.98 11.17 26.00

SASRec 5.07 9.46 7.72 15.35 0.98 2.08 5.48 10.84 0.88 1.66 1.67 3.19 4.28 8.54 4.97 9.65 11.68 27.01

STAMP 5.07 9.46 7.72 15.35 0.98 2.08 5.48 10.84 0.88 1.66 1.67 3.19 4.28 8.54 4.97 9.65 11.20 24.96

D

NARM 5.17 9.56 8.32 16.71 0.98 2.12 5.90 11.85 1.00 1.84 1.73 3.33 4.32 8.65 5.05 9.82 11.85 27.25

SASRec 5.13 9.59 8.17 16.37 1.05 2.24 5.53 10.98 0.92 1.72 1.73 3.29 4.33 8.62 5.03 9.76 11.87 27.27

STAMP 5.18 9.59 8.27 16.59 1.13 2.68 5.82 11.79 1.12 2.07 1.70 3.26 4.25 8.52 5.02 9.75 11.58 26.51

M

NARM 5.27 9.67 8.32 16.72 1.05 2.26 5.88 11.93 1.03 1.91 1.75 3.36 4.32 8.73 5.03 9.95 11.98 27.47

SASRec 5.27 9.67 8.30 16.71 1.10 2.32 5.88 11.95 0.95 1.80 1.75 3.36 4.33 8.79 5.12 9.93 11.97 27.47

STAMP 5.27 9.68 8.32 16.71 1.22 2.89 5.83 11.91 1.22 2.27 1.75 3.36 4.22 8.63 5.10 9.99 11.97 27.46

Origin SASRec 4.73 8.77 8.15 16.68 0.92 1.83 4.95 8.48 0.85 1.57 1.32 2.44 3.97 7.43 2.65 5.11 7.43 15.08

H

NARM 4.72 8.79 6.65 13.64 0.88 1.70 5.15 9.65 0.92 1.73 1.50 2.84 4.17 8.73 4.48 8.74 11.13 25.82

SASRec 4.70 8.73 5.20 11.38 1.03 1.93 5.52 9.75 0.98 1.89 1.50 2.85 4.55 9.04 4.75 9.18 10.85 25.76

STAMP 4.75 8.77 6.13 13.26 0.97 2.33 5.43 9.73 0.93 1.82 1.58 3.04 4.40 9.13 4.27 9.01 7.43 20.53

D

NARM 4.82 8.98 8.77 17.24 1.20 2.30 5.60 10.44 0.98 1.88 1.55 2.93 4.53 9.22 4.82 9.24 11.58 26.82

SASRec 4.90 9.08 8.77 17.27 1.27 2.32 5.98 10.41 0.98 1.89 1.58 2.98 4.75 9.17 4.87 9.34 11.30 26.48

STAMP 4.93 9.05 8.60 17.03 1.03 2.53 5.75 10.10 0.98 1.88 1.62 3.12 4.43 9.23 4.90 9.37 10.28 24.49

M

NARM 4.88 9.03 8.80 17.34 1.32 2.51 6.07 10.54 1.00 1.91 1.65 3.11 4.57 9.34 4.88 9.45 11.85 27.32

SASRec 4.92 9.06 8.82 17.34 1.30 2.42 6.07 10.54 1.02 1.92 1.65 3.11 4.63 9.33 4.90 9.40 11.92 27.41

STAMP 4.95 9.07 8.80 17.33 1.17 2.79 6.00 10.66 1.00 1.90 1.67 3.15 4.63 9.37 4.93 9.50 11.90 27.39

Origin STAMP 4.57 9.16 7.18 14.71 0.80 1.87 4.55 9.41 0.77 1.40 1.30 2.67 3.38 6.74 2.77 5.48 7.45 14.98

H

NARM 4.47 8.92 7.83 15.87 1.07 2.41 5.47 10.15 0.82 1.57 1.63 3.11 3.80 8.14 4.15 9.13 10.87 23.72

SASRec 4.65 9.14 7.70 15.51 1.05 2.37 5.38 10.88 0.83 1.65 1.60 3.19 3.85 8.09 4.30 9.12 10.47 25.09

STAMP 4.75 9.35 7.83 15.83 1.15 2.61 5.20 10.43 0.78 1.55 1.72 3.28 3.77 7.72 4.28 9.07 10.38 24.96

D

NARM 4.78 9.41 7.90 16.02 1.20 2.72 5.68 11.61 0.87 1.67 1.75 3.35 3.92 8.21 4.33 9.35 10.58 25.48

SASRec 4.82 9.45 7.88 16.05 1.22 2.83 5.72 11.92 0.88 1.71 1.63 3.34 3.92 8.20 4.33 9.33 10.50 25.17

STAMP 4.78 9.45 7.88 16.05 1.23 2.80 5.75 11.73 0.85 1.66 1.75 3.34 3.90 8.17 4.35 9.26 10.55 25.22

H

NARM 4.87 9.57 7.95 16.14 1.25 2.91 5.83 11.97 0.92 1.78 1.70 3.46 4.00 8.34 4.43 9.46 11.00 26.05

SASRec 4.92 9.58 7.95 16.14 1.25 2.94 5.73 12.08 0.92 1.76 1.70 3.45 3.92 8.30 4.35 9.45 10.63 25.36

STAMP 4.83 9.52 7.95 16.14 1.23 2.90 5.78 11.98 0.92 1.76 1.70 3.45 3.90 8.23 4.33 9.43 10.62 25.33

1
We omit “%” on the numbers and “@5” on the evaluation metrics for simplicity.

declines as L becomes larger. The reason can be that in each itera-

tion, the generated samples can be noisy, running our framework

on them may accumulate the error to the next iteration. As the

iteration number increases, the samples are severely biased which

may lead to lowered performance.

4.4 Different Sampler Implementations
In this section, we investigate the influence of different sampler

implementations for the final performance. For each of the heuristic

and learning-based samplers, we use NARM, SASRec and STAMP

as the specific implementations, respectively. The parameters are

set as their optimal values tuned in the above experiments. From

the results presented in Table 3, we can see: in most cases, the

improvement of our framework is robust to different sampler im-

plementations, and the results are consistent for different anchor

models. More specifically, for the same sampler implementation,

the performance ranking between the heuristic, data- and model-

oriented methods are stable in most cases. This result suggests that

the performance can be more relevant with the internal designs

of different samplers, but not their specific implementations. It is

interesting to see that for each anchor model, the best performance

is achieved when the sampler implementation is different in more

cases. We speculate that different model architectures may reveal

the user sequential behavior patterns from different perspectives,

which may introduce more complementary knowledge to enhance

the final recommendation performance. Actually, this observation

is aligned with the spirit of many machine learning paradigms such

as co-teaching [10] and multi-view learning [27], which believe that

models with different parameterizations may inspire each other to

promote the final performance.

4.5 Hyper-parameter Analysis
In this section, we analyze the influence of the key hyper param-

eters in our framework. All the other parameters are set as their

optimal values, and we report the results on the same datasets and

evaluation metric as the above experiments.

Influence of the confidence parameter κ: κ sets the confi-

dence of the sampler model on the generated sequences. We tune

it in [0.0,10−8,10−6,10−4,10−2,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0].

For the extreme cases, κ = 0.0 means that we do not control the

noise, all the samples are allowed to participate the training of the

anchor model. When κ is set as 1.0, no samples will be generated,

the result is exactly the performance of the original anchor model.

We present the results in Figure 5, from which we can see: the best

performance is usually achieved when κ is moderate. This agrees

with our opinion in section 2.5, i.e., too small κ may introduce too

much noisy information into the training process, while too large

κ may severely reduce the number of generated sequences. Both of



Figure 5: Influence of the confidence parameter κ.

Figure 6: Influence of the index d .

these situations are suboptimal. By tunning κ in proper ranges, we

are allowed to achieve better trade-offs to improve the recommen-

dation performance. Influence of the intervention index d: In
order to investigate the influence of the user recent behaviors, we

tune d in the range of [−1,−2,−3,−4,−5,−6], where the negative

value means that the index is from back to front. The results are

presented in Figure 6. We can see: for the heuristic method, the

performance fluctuates a lot as d varies, but even the best result

is still unsatisfied. In most cases, the performance of the learning-

based methods are more robust to the index d , and the slightly

better performances are usually achieved when d falls in the range

of [−2,−5], which may suggest that moderate d’s can be better

choices in practice.

4.6 Case Study
In order to provide an intuitive understanding of the generated

sequences by our framework. We present a case study based on

the MovieLens dataset in Figure 7, where the second last item is

altered, and the replacement item is selected from the whole item

set (i.e., C = I). In the heuristic method (the second line), the item

is altered in a randommanner, and “House” is selected to replace the

original movie–“Run Lola Run”. However, the categories of these

movies are quite different, which makes the generated sequence

less reasonable, and may limit its effectiveness for promoting the

anchor model performance. In the learning-based methods (the

third and forth lines), the selected movies share the same categories

with the original item, i.e., “Ever After” and “Run Lola Run” are

both Romance movies, “Godfather” and “Run Lola Run” belong to

the same action and crime categories. This manifests that learning-

based methods can generate more reasonable sequences, which

can also be justified by the superior performance of these methods

according to above quantitative experiments.

5 CONCLUSION
In this paper, we propose to improve sequential recommendation

by enriching the user behavior sequences based on the idea of

counterfactual thinking. To achieve this goal, we design three im-

plementations including both heuristic and learning-based methods.

We also analyze the sample complexity of the designed framework,

and propose a simple but effective method to control the noisy

information. In the experiments, we evaluate our framework based

Figure 7: Case study. In the first line, we present the orig-
inal user behavior sequence. The second line is the se-
quence generated from the heuristicmethod. The sequences
produced from the learning-based methods are shown in
the third (data-oriented method) and forth (model-oriented
method) lines. The picture of each movie is downloaded
from https://www.amazon.com/, and the categories of the
movies are also presented for reference.

on nine real-world datasets to demonstrate its effectiveness and

generality. This paper makes a first step on applying the idea of

counterfactual thinking to the field of sequential recommendation.

There is still much room for improvement. To begin with, one can

study how to simultaneously replace multiple items, or investigate

how to automatically learn the index of the item to be replaced.

Then, it is also interesting to explore other methods for relaxing

the intractable optimization targets, e.g., formulating the learning

process as a reinforcement learning problem.

6 ACKNOWLEDGMENT
This work is supported in part by Beijing Outstanding Young Scien-

tist Program NO. BJJWZYJH012019100020098 and National Natural

Science Foundation of China (No. 61832017).



REFERENCES
[1] Ehsan Abbasnejad, Damien Teney, Amin Parvaneh, Javen Shi, and Anton van den

Hengel. 2020. Counterfactual vision and language learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10044–10054.

[2] Oron Ashual and Lior Wolf. 2019. Specifying object attributes and relations in

interactive scene generation. In Proceedings of the IEEE International Conference
on Computer Vision. 4561–4569.

[3] Long Chen, Hanwang Zhang, Jun Xiao, Xiangnan He, Shiliang Pu, and Shih-

Fu Chang. 2019. Counterfactual critic multi-agent training for scene graph

generation. In Proceedings of the IEEE International Conference on Computer
Vision. 4613–4623.

[4] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and

Hongyuan Zha. 2018. Sequential recommendation with user memory networks.

In Proceedings of the eleventh ACM international conference on web search and
data mining. 108–116.

[5] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sen-

gupta, and Anil A Bharath. 2018. Generative adversarial networks: An overview.

IEEE Signal Processing Magazine 35, 1 (2018), 53–65.
[6] Tsu-Jui Fu, Xin Eric Wang, Matthew F Peterson, Scott T Grafton, Miguel P

Eckstein, and William Yang Wang. 2020. Counterfactual Vision-and-Language

Navigation via Adversarial Path Sampler. In European Conference on Computer
Vision. Springer, 71–86.

[7] Hongchang Gao and Heng Huang. 2018. Self-paced network embedding. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1406–1415.

[8] Sahaj Garg, Vincent Perot, Nicole Limtiaco, Ankur Taly, Ed H Chi, and Alex

Beutel. 2019. Counterfactual fairness in text classification through robustness. In

Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. 219–226.
[9] Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019.

Counterfactual visual explanations. arXiv preprint arXiv:1904.07451 (2019).
[10] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang,

and Masashi Sugiyama. 2018. Co-teaching: Robust training of deep neural net-

works with extremely noisy labels. arXiv preprint arXiv:1804.06872 (2018).
[11] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov

chains for sparse sequential recommendation. In 2016 IEEE 16th International
Conference on Data Mining (ICDM). IEEE, 191–200.

[12] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial

personalized ranking for recommendation. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval. 355–364.

[13] Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and

Tat-Seng Chua. 2018. Nais: Neural attentive item similarity model for recom-

mendation. IEEE Transactions on Knowledge and Data Engineering 30, 12 (2018),

2354–2366.

[14] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[15] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang.

2018. Improving sequential recommendation with knowledge-enhanced mem-

ory networks. In The 41st International ACM SIGIR Conference on Research &
Development in Information Retrieval. 505–514.

[16] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-

image translation with conditional adversarial networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 1125–1134.

[17] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-

mendation. In 2018 IEEE International Conference on Data Mining (ICDM). IEEE,
197–206.

[18] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfac-

tual fairness. In Advances in neural information processing systems. 4066–4076.

[19] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.

Neural attentive session-based recommendation. In Proceedings of the 2017 ACM
on Conference on Information and Knowledge Management. 1419–1428.

[20] Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-Ting Sun. 2017.

Adversarial ranking for language generation. Advances in neural information
processing systems 30 (2017), 3155–3165.

[21] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. 2018. STAMP: short-

term attention/memory priority model for session-based recommendation. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 1831–1839.

[22] Chen Ma, Liheng Ma, Yingxue Zhang, Jianing Sun, Xue Liu, and Mark Coates.

2020. Memory Augmented Graph Neural Networks for Sequential Recommen-

dation. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34.
5045–5052.

[23] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,
452–461.

[24] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-

izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. 811–820.

[25] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding machine learning:
From theory to algorithms. Cambridge university press.

[26] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.

2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-

resentations from transformer. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management. 1441–1450.

[27] Shiliang Sun. 2013. A survey of multi-view machine learning. Neural computing
and applications 23, 7 (2013), 2031–2038.

[28] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-

tion via convolutional sequence embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining. 565–573.

[29] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng

Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative

and discriminative information retrieval models. In Proceedings of the 40th In-
ternational ACM SIGIR conference on Research and Development in Information
Retrieval. 515–524.

[30] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James Sharpnack. 2020. SSE-PT:

Sequential recommendation via personalized transformer. In Fourteenth ACM
Conference on Recommender Systems. 328–337.

[31] Chengfeng Xu, Pengpeng Zhao, Yanchi Liu, Jiajie Xu, Victor S Sheng S. Sheng,

Zhiming Cui, Xiaofang Zhou, and Hui Xiong. 2019. Recurrent convolutional neu-

ral network for sequential recommendation. In The World Wide Web Conference.
3398–3404.

[32] Shuyuan Xu, Yunqi Li, Shuchang Liu, Zuohui Fu, and Yongfeng Zhang. 2020.

Learning Post-Hoc Causal Explanations for Recommendation. arXiv preprint
arXiv:2006.16977 (2020).

[33] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang,

and Xiaodong He. 2018. Attngan: Fine-grained text to image generation with

attentional generative adversarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 1316–1324.

[34] Wayne Xin Zhao, Shanlei Mu, Yupeng Hou, Zihan Lin, Kaiyuan Li, Yushuo Chen,

Yujie Lu, Hui Wang, Changxin Tian, Xingyu Pan, Yingqian Min, Zhichao Feng,

Xinyan Fan, Xu Chen, Pengfei Wang, Wendi Ji, Yaliang Li, Xiaoling Wang, and

Ji-Rong Wen. 2020. RecBole: Towards a Unified, Comprehensive and Efficient

Framework for Recommendation Algorithms. arXiv preprint arXiv:2011.01731
(2020).

[35] Ran Zmigrod, Sabrina J Mielke, Hanna Wallach, and Ryan Cotterell. 2019. Coun-

terfactual data augmentation for mitigating gender stereotypes in languages with

rich morphology. arXiv preprint arXiv:1906.04571 (2019).


	Abstract
	1 Introduction
	2 The CASR Framework
	2.1 Sequential Recommendation
	2.2 Heuristic Sampler
	2.3 Learning-based Samplers
	2.4 Learning Algorithm
	2.5 Theoretical Analysis

	3 Related Work
	4 Experiments
	4.1 Experiment Setup
	4.2 Overall Comparison
	4.3 The Number of Generated Sequences
	4.4 Different Sampler Implementations
	4.5 Hyper-parameter Analysis
	4.6 Case Study

	5 Conclusion
	6 Acknowledgment
	References

